
10 MATH 68 FALL 2009 NOTES

1.2. LECTURE 2: COMPOSITIONS AND MORE ABOUT

LOG-CONCAVITY

Continuing our review of basic enumerative results, today we look at compositions. A
weak composition of n into k parts is a sequence of k nonnegative integers which sum to
n. For example, 2, 0, 1, 3 is a weak composition of 6. A composition of n into k parts is a
sequence of k positive integers which sum to n. For example, 2, 1, 3 is a weak composition
of 6.

Theorem 1. There are
n k 1

k 1

n k 1

n
weak compositions of n into k parts.

Proof. We want to count the number of sequences c1, c2, . . . , ck which sum to n. We count this
quantity using the “balls and walls” formulation. Express the composition c1, c2, . . . , ck as a se-
quence of c1 balls, followed by a wall, followed by c2 balls, followed by another wall, and so on.
For example, the composition 2, 0, 1, 3 corresponds to

.

A weak composition of n into k parts will contain n balls and k 1 walls (one between each part).

Therefore, there are as many weak compositions of n into k parts as there are ways to choose which

k 1 of the n k 1 symbols will be walls (or which n of the n k 1 symbols will be balls).

We now use this approach to count compositions.

Theorem 2. For n 1, there are
n 1

k 1
compositions of n into k parts.

Proof. If we have a composition of n into k parts then by subtracting 1 from each part, we obtain
a weak composition of n k into k parts. Therefore the number of these compositions is

n k k 1

k 1

n 1

k 1
,

as desired.

Note the “for n 1” hypothesis in this theorem. That’s there because we say that 0 has
1 composition, the empty composition, which has no parts.

Theorem 3. For n 1, the total number of compositions of n is 2n 1.

Proof. This follows from the previous result because

n 1

k 1
2n 1,
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Figure 1.1: The Ferrers diagram of the composition 1, 5, 2, 3 of 11.

but using the balls and walls approach we can give a prettier proof. In the balls and walls sequence

of a composition, between any two balls there is either precisely one wall or no walls (because we

are not allowed to use 0 as a part). Therefore, the number of compositions of n is equal to the

number of ways to decide whether to have a wall or not between each pair of consecutive balls.

Since there are n balls, there are 2n 1 ways to decide this.

An alternative to the balls and walls representation of a composition is its Ferrers dia-
gram. The Ferrers diagram of the composition c1, c2, . . . , ck consists of left-justified rows of
squares in which the ith row (counting from the top down) contains ci squares. Figure 1.1
shows an example. We say that a composition fits inside a k m rectangle if it has at most k

parts each at most m. For example, the composition in Figure 1.1 fits inside a 4 5 rectangle
(or any bigger rectangle).

Now for any k and m, we can build a polynomial, pk,m, in which the coefficient of xn is
the number of compositions of n which fit inside a k m rectangle. Note that pk,m really is
a polynomial, because the coefficient of xn will be 0 for all n km 1. It is good practice
to compute a few of these polynomials by hand:

p1,3 1 x x2 x3

p3,1 1 x x2 x3

p2,2 1 x 2x2 2x3 x4

p3,2 1 x 2x2 3x3 4x4 3x5 x6

First note that the constant terms are here because they count the empty composition. But
more curiously, there polynomials are all unimodal! But how can we prove this? First, we
develop a recurrence of the pk,ms.

Theorem 4. If k 2, then pk,m 1 x x2 xm pk 1,m.

Proof. Consider a nonempty composition c1, c2, . . . , cj of n which fits inside a k m rectangle (so
j k and 1 ci m for all i j 1, 2, . . . , j ). If we remove the first part c1, we obtain a
composition of n c1 which fits inside a k 1 m rectangle. If the polynomial that counts these is
given by

pk 1,m a0 a1x x k 1 m,

then the number of compositions of n which fit inside a k m rectangle is (for n 1):

an 1 an 2 an m,
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and this is exactly the coefficient of n in 1 x x2 xm pk 1,m, proving the recurrence.

This recurrence expresses pk,m as the product of x x2 xm and pk 1,m (ignoring
the 1 for now). We can therefore prove that the pk,m polynomials are unimodal using the
following result of Keilson and Gerber from 1971.

Products of Log-Concave and Unimodal Polynomials. Suppose
that the polynomial p x is log-concave and has positive coefficients
and that the polynomial q x is unimodal. Then their product
p x q x is unimodal.

Proof. Suppose that p x a0 a1x anxn and q x b0 b1x brx
r. For the purposes

of the proof, it is easiest to assume that b0 0. We may assume this without loss of generality,
because if b0 0, we can simply consider the polynomial xq x , which must also be unimodal.

The coefficient of xk in p x q x is

xk p x q x
k

i 0

aibk i,

so the difference between the coefficient of xk 1 and the coefficient of xk is

ak 1b0

k

i 0

ai bk 1 i bk i ,

and since we have assumed that b0 0, the ak 1b0 term vanishes. (Had we not have assumed that
b0 0, we would have to introduce a b 1 coefficient at this stage.) Now suppose that bm is the
greatest coefficient of q x , or in the case of a tie, one of the greatest coefficients. We rewrite this
difference as

xk 1 p x q x xk p x q x
k m

i 0

ai bk 1 i bk i

k

i k m 1

ai bk 1 i bk i . (1.1)

We have divided the sum into two parts to separate the positive and negative terms. The terms in
the leftmost sum are, in reverse order,

ak m bm 1 bm , ak m 1 bm 2 bm 1 , . . . , a0 bk 1 bk ,

so these are nonpositive, while the terms in the rightmost sum are nonnegative.
Since the sequence ak is log-concave, the ratio of consecutive terms is decreasing. Therefore,

ai
ak m 1

ak m
ai 1 for i k m, while

ai
ak m 1

ak m
ai 1 for i k m.
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Thus we may obtain an upper bound on (1.1) by replacing both ais by
ak m 1

ak m
ai 1:

xk 1 p x q x xk p x q x

k m

i 0

ak m 1

ak m
ai 1 bk 1 i bk i

k

i k m 1

ak m 1

ak m
ai 1 bk 1 i bk i

ak m 1

ak m

k

i 0

ai 1 bk 1 i bk i

ak m 1

ak m
xk p x q x xk 1 p x q x .

Since p x has nonnegative coefficients, ak 1 ak 0. Therefore, we have just shown that once

the difference in coefficients becomes negative (i.e., once the coefficients start decreasing), this dif-

ference will stay negative (i.e., the coefficients will continue decreasing), verifying that p x q x is

unimodal, as desired.

This (and induction) is all we need to prove that the pk,m polynomials are unimodal:

Theorem 5. [Sagan (2009)] For all k and m, the polynomial pk,m is unimodal.

Proof. We argue by induction. For the base case, where k 1, we have

p1,m 1 x x2 xm,

which is clearly unimodal. Now assume that k 2 and that pk 1,m is unimodal. Our recurrence
shows that

pk,m 1 x x2 xm pk 1,m.

Since x x2 xm is log-concave, we know that x x2 xm pk 1,m is unimodal.

Furthermore, the coefficient of x in this polynomial is 1 (since the integer 1 has 1 composition, which

fits into any nonempty rectangle), so adding a 1 to this polynomial will not violate unimodality.


