Math 69
Winter 2017
Wednesday, January 25

A reminder of some definitions from the reading.

Formally, a structure 2 for a language L is a function that assigns to each
parameter symbol of £ a translation.!

The translation of V is given by a nonempty set |2l|, the universe of 2.
Intuitively, when interpreting formulas of £ in 2, we translate Vx as “for
every element x of |2(].”

If P is a one-place predicate symbol, the translation of P is a subset P*
of |2]. Intuitively, P* is the set of all elements of the universe for which P
is true. If the universe of 2 is N, and we informally translate Px as “x is
prime,” then formally we would say

P* = {n € N|n is prime}.

The same goes for n-place predicate symbols. If we informally translate
the 2-place predicate symbol < of the language of arithmetic as “less than,”
then formally

A

<*={(n,m) € N* | n <m}.

The translation of a constant symbol ¢ is an element ¢* of |2
The translation of an n-place function symbol f is an n-ary function

Definition: A wvariable assignment for 2 is a function s from the set of
variables of £ to the universe |[2A|.

If s is a variable assignment, x is a variable, and d € |2l|, the variable
assignment s(z|d) agrees with s on all variables other than x and sends z to
d. Formally,

d if y = x;

s<x|d><y>={s<y) S

Warning: This is confusing notation: s is a function, but s(x|d) does not
mean “s of z|d”; rather, s(x|d) is the name of a different function.

LA structure is always a structure for a particular language.

Next warning: The textbook uses the notation =y ¢[s] to mean “the
structure 2 with variable assignment s satisfies the formula ¢.” T am about
to use a different notation, 2 = ¢[s], both because I am too used to it to
change easily, and because it is now pretty universally accepted as standard
notation. We'll just have to get used to translating the textbook’s notation.

Definition: If s is a variable assignment for 2, we define the extension s
of s to all terms by recursion; here x denotes any variable symbol, ¢ denotes
any constant symbol, f denotes any n-place function symbol, and ¢y, ts,. ..,
t, any terms.

S(ftity---tn) = f2GE(t), 3(t), ... 5(tn)).

Example: If £ is the language of arithmetic (which the textbook calls
the language of elementary number theory), and 9t is the intended model,
then, for example,

97 =N
0" =0
+M(n,m) =n+m
<N"={(n,m) € N* | n < m}.
If we define a variable assignment s for 9 by s(vx) = 2k, then our definition
of 5 tells us

5(4v50) = +7(3(vs3),5(0)) = +7(6,0) =6 + 0 =
Definition: We define satisfaction (“truth”) of a formula for a given
structure 2 and variable assignment s by recursion:
A=t =tafs] <= 35(t1) =35(t2)

A= Pty...t[s] <= (B(t),...,5(t,)) € P*

AE (—a)[s] <= AWK als]
A= (a— P)s] —= [Ql = afs] or 2 = B]s] (or both)]
AE=Vreals] < for every d € || we have 2 = «fs(z|d)].

Exercise: Prove carefully and formally, from the definitions, that if £ is
a language with a 1-place predicate symbol P, and 2 is a structure for the
language £, and s is any variable assignment for 2(, then

A = Vo Pzls] <= P*# ||

Exercise: Show that no one of the following sentences is logically implied
by the other two. This is done by giving a structure in which the sentence
in question is false, while the other two are true. Your structures can be
familiar mathematical structures, familiar non-mathematical structures —
for example, |A| is the set of all living humans, and P* the set of all pairs
(a,b) where a is b’s mother — or structures that you make up. For this
exercise, you can give informal explanations of which sentences are true and
which are false in your structures; you need not use the formal definition of
satisfaction.

(This is Exercise 2.2.2 in the textbook. You might check out page 82 of
the textbook for an example of a finite made-up structure for this language,
and a picture describing it.)

(a.) YaVyVz (Pxy — (Pyz — Pxz))
(b.) VaVy (Pxy — Pyzx)

(c.) YxJyPry — JyVz Pxy

Lemma: If s and r are two variable assignments for 2(, and s(z) = r(x)
for every variable x that occurs in the term ¢, then

5(t) =7 (1).
If s(x) = r(z) for every variable x that occurs free in the wif o, then
AEals] < AE=ar].

We can prove this lemma by induction on ¢ and on a. You may assume that
it is true. You may want to use it in the following exercise.

Exercise: Prove (carefully and formally, from the definitions) the fol-
lowing three related propositions. You may use the lemma on the preceding

page.
1. If = does not occur free in « then « = Vz .
2. In general, Yz a = a but a £ Vr a.
3. = aif and only if = Vz a.

Recall that a |= § means that « logically implies 8 (whenever 2 |= «/[s], then
2 = B[s]), and | a means that « is logically valid (for every 2 and s, we
have 20 = a[s]). At some point, it might help to note that if s is a variable
assignment, z is a variable, and a € |2l|, then

(s(w) = a) = <s(:c|a) = s).

Exercise: Let £ be a language with equality and a 2-place predicate
symbol P. For each of the following conditions, find a sentence ¢ such that
the structure 2 is a model of o (meaning 2 |= o, meaning 2 = o[s] for any
variable assignment s) if and only if the condition holds.

Feel free to use all five sentential connectives, use d, and omit or add
parentheses for greatest readability. You do not have to prove formally that
your sentence works.

1. |2 has exactly two members.

2. P is a function from |2| into |2|. (That is, each element a of the
universe is related to exactly one other element by P2.)

3. P¥ is a permutation of |2|. (A permutation is a bijection of || to
itself; that is, a function that is one-to-one and onto).

