Math 69 Winter 2017 Wednesday, January 25

A reminder of some definitions from the reading.

Formally, a structure \mathfrak{A} for a language \mathcal{L} is a function that assigns to each parameter symbol of \mathcal{L} a translation.¹

The translation of \forall is given by a nonempty set $|\mathfrak{A}|$, the universe of \mathfrak{A} . Intuitively, when interpreting formulas of \mathcal{L} in \mathfrak{A} , we translate $\forall x$ as "for every element x of $|\mathfrak{A}|$."

If P is a one-place predicate symbol, the translation of P is a subset $P^{\mathfrak{A}}$ of $|\mathfrak{A}|$. Intuitively, $P^{\mathfrak{A}}$ is the set of all elements of the universe for which P is true. If the universe of \mathfrak{A} is \mathbb{N} , and we informally translate Px as "x is prime," then formally we would say

$$P^{\mathfrak{A}} = \{ n \in \mathbb{N} \mid n \text{ is prime} \}.$$

The same goes for n-place predicate symbols. If we informally translate the 2-place predicate symbol < of the language of arithmetic as "less than," then formally

$$<^{\mathfrak{A}} = \{ (n,m) \in \mathbb{N}^2 \mid n < m \}.$$

The translation of a constant symbol c is an element $c^{\mathfrak{A}}$ of $|\mathfrak{A}|$.

The translation of an *n*-place function symbol f is an *n*-ary function $f^{\mathfrak{A}} : |\mathfrak{A}|^n \to \mathfrak{A}.$

Definition: A variable assignment for \mathfrak{A} is a function s from the set of variables of \mathcal{L} to the universe $|\mathfrak{A}|$.

If s is a variable assignment, x is a variable, and $d \in |\mathfrak{A}|$, the variable assignment s(x|d) agrees with s on all variables other than x and sends x to d. Formally,

$$s(x|d)(y) = \begin{cases} d & \text{if } y = x; \\ s(y) & \text{if } y \neq x. \end{cases}$$

Warning: This is confusing notation: s is a function, but s(x|d) does not mean "s of x|d"; rather, s(x|d) is the name of a different function.

¹A structure is always a structure for a particular language.

Next warning: The textbook uses the notation $\models_{\mathfrak{A}} \varphi[s]$ to mean "the structure \mathfrak{A} with variable assignment s satisfies the formula φ ." I am about to use a different notation, $\mathfrak{A} \models \varphi[s]$, both because I am too used to it to change easily, and because it is now pretty universally accepted as standard notation. We'll just have to get used to translating the textbook's notation.

Definition: If s is a variable assignment for \mathfrak{A} , we define the extension \overline{s} of s to all terms by recursion; here x denotes any variable symbol, c denotes any constant symbol, f denotes any n-place function symbol, and t_1, t_2, \ldots, t_n any terms.

$$\overline{s}(x) = s(x)$$

$$\overline{s}(c) = c^{\mathfrak{A}}$$

$$\overline{s}(ft_1t_2\cdots t_n) = f^{\mathfrak{A}}(\overline{s}(t_1), \overline{s}(t_1), \dots \overline{s}(t_n)).$$

Example: If \mathcal{L} is the language of arithmetic (which the textbook calls the language of elementary number theory), and \mathfrak{N} is the intended model, then, for example,

$$\begin{split} |\mathfrak{N}| &= \mathbb{N} \\ 0^{\mathfrak{N}} &= 0 \\ +^{\mathfrak{N}}(n,m) &= n+m \\ <^{\mathfrak{N}} &= \{(n,m) \in \mathbb{N}^2 \mid n < m\}. \end{split}$$

If we define a variable assignment s for \mathfrak{N} by $s(v_k) = 2k$, then our definition of \overline{s} tells us

$$\overline{s}(0) = 0$$

$$\overline{s}(v_3) = s(v_3) = 6$$

$$\overline{s}(+v_30) = +^{\mathfrak{N}}(\overline{s}(v_3), \overline{s}(0)) = +^{\mathfrak{N}}(6, 0) = 6 + 0 = 6.$$

Definition: We define satisfaction ("truth") of a formula for a given structure \mathfrak{A} and variable assignment s by recursion:

$$\begin{split} \mathfrak{A} &\models t_1 = t_2[s] \iff \overline{s}(t_1) = \overline{s}(t_2) \\ \mathfrak{A} &\models Pt_1 \dots t_n[s] \iff \langle \overline{s}(t_1), \dots, \overline{s}(t_n) \rangle \in P^{\mathfrak{A}} \\ \mathfrak{A} &\models (\neg \alpha)[s] \iff \mathfrak{A} \not\models \alpha[s] \\ \mathfrak{A} &\models (\alpha \to \beta)[s] \iff \left[\mathfrak{A} \not\models \alpha[s] \text{ or } \mathfrak{A} \models \beta[s] \text{ (or both)} \right] \\ \mathfrak{A} &\models \forall x \, \alpha[s] \iff \text{ for every } d \in |\mathfrak{A}| \text{ we have } \mathfrak{A} \models \alpha[s(x|d)]. \end{split}$$

Exercise: Prove carefully and formally, from the definitions, that if \mathcal{L} is a language with a 1-place predicate symbol P, and \mathfrak{A} is a structure for the language \mathcal{L} , and s is any variable assignment for \mathfrak{A} , then

$$\mathfrak{A} \models \neg \forall x \, Px[s] \iff P^{\mathfrak{A}} \neq |\mathfrak{A}|.$$

Exercise: Show that no one of the following sentences is logically implied by the other two. This is done by giving a structure in which the sentence in question is false, while the other two are true. Your structures can be familiar mathematical structures, familiar non-mathematical structures — for example, $|\mathfrak{A}|$ is the set of all living humans, and $P^{\mathfrak{A}}$ the set of all pairs (a, b) where a is b's mother — or structures that you make up. For this exercise, you can give informal explanations of which sentences are true and which are false in your structures; you need not use the formal definition of satisfaction.

(This is Exercise 2.2.2 in the textbook. You might check out page 82 of the textbook for an example of a finite made-up structure for this language, and a picture describing it.)

- (a.) $\forall x \forall y \forall z (Pxy \rightarrow (Pyz \rightarrow Pxz))$
- (b.) $\forall x \forall y (Pxy \rightarrow Pyx)$
- (c.) $\forall x \exists y Pxy \rightarrow \exists y \forall x Pxy$

Lemma: If s and r are two variable assignments for \mathfrak{A} , and s(x) = r(x) for every variable x that occurs in the term t, then

$$\overline{s}(t) = \overline{r}(t).$$

If s(x) = r(x) for every variable x that occurs *free* in the wff α , then

$$\mathfrak{A} \models \alpha[s] \iff \mathfrak{A} \models \alpha[r].$$

We can prove this lemma by induction on t and on α . You may assume that it is true. You may want to use it in the following exercise.

Exercise: Prove (carefully and formally, from the definitions) the following three related propositions. You may use the lemma on the preceding page.

- 1. If x does not occur free in α then $\alpha \models \forall x \alpha$.
- 2. In general, $\forall x \alpha \models \alpha$ but $\alpha \not\models \forall x \alpha$.
- 3. $\models \alpha$ if and only if $\models \forall x \alpha$.

Recall that $\alpha \models \beta$ means that α logically implies β (whenever $\mathfrak{A} \models \alpha[s]$, then $\mathfrak{A} \models \beta[s]$), and $\models \alpha$ means that α is logically valid (for every \mathfrak{A} and s, we have $\mathfrak{A} \models \alpha[s]$). At some point, it might help to note that if s is a variable assignment, x is a variable, and $a \in |\mathfrak{A}|$, then

$$(s(x) = a) \implies (s(x|a) = s).$$

Exercise: Let \mathcal{L} be a language with equality and a 2-place predicate symbol P. For each of the following conditions, find a sentence σ such that the structure \mathfrak{A} is a model of σ (meaning $\mathfrak{A} \models \sigma$, meaning $\mathfrak{A} \models \sigma[s]$ for any variable assignment s) if and only if the condition holds.

Feel free to use all five sentential connectives, use \exists , and omit or add parentheses for greatest readability. You do not have to prove formally that your sentence works.

1. $|\mathfrak{A}|$ has exactly two members.

2. $P^{\mathfrak{A}}$ is a function from $|\mathfrak{A}|$ into $|\mathfrak{A}|$. (That is, each element *a* of the universe is related to exactly one other element by $P^{\mathfrak{A}}$.)

3. $P^{\mathfrak{A}}$ is a permutation of $|\mathfrak{A}|$. (A permutation is a bijection of $|\mathfrak{A}|$ to itself; that is, a function that is one-to-one and onto).