Math 69 Winter 2017 Tuesday, January 31 Extra Problems

Two old definitions and two new ones:

Definition: A variable assignment s extends to a function \overline{s} on all terms defined recursively by:

$$\overline{s}(x) = s(x)$$
 for a variable symbol x;
 $\overline{s}(c) = c^{\mathfrak{A}}$ for a constant symbol c;
 $\overline{s}(ft_1t_2\cdots t_n) = f^{\mathfrak{A}}(\overline{s}(t_1), \overline{s}(t_2), \dots, \overline{s}(t_n)).$

Definition: If s is a variable assignment for \mathfrak{A} and $d \in |\mathfrak{A}j|$ then we define a new variable assignment s(xjd) by

$$s(xjd)(v) = \begin{cases} d & \text{if } v = x; \\ s(v) & \text{if } v \neq x. \end{cases}$$

That is, we change the translation s so that x is translated as d.

Definition: If t and u are terms and x is a variable, we define t_u^x to be the term obtained from t by replacing all occurrences of x with u.

Definition: If α is a wff, we define α_u^x to be the wff obtained from α by replacing every free occurrence of the variable symbol x with the term u.

For example, suppose u is SS0.

If t is +xy then t_u^x is +SS0y. If α is $\exists y(x = y + y)$ then α_u^x is $\exists y(SS0 = y + y)$. If α is $\exists x(S0 = x)$ then α_u^x is $\exists x(S0 = x)$. Exercise 1: Give a definition of t_u^x by recursion on t.

Exercise 2: Prove that if $\overline{s}(u) = d$ then

$$\overline{s}(t_u^x) = \overline{s(x|d)}(t)$$
:

Intuitively, if the term u is translated as d, then replacing the variable x in t with the term u has the same effect (on the translation of t) as translating x as d. Use your recursive definition of t_u^x .

Exercise 3: Give a definition of α_u^x by recursion on α . Be careful with the $\forall v \text{ step}$; the cases v = x and $v \neq x$ are different. Remember that we have already given a definition of t_u^x where t is any term.

Exercise 4: Prove that for any structure \mathfrak{A} , variable assignment s, variable symbol x, term u, and quantifier-free formula α (that is, the symbol \forall does not occur in α), we have

$$\mathfrak{A}\models \alpha[s(x|\overline{s}(u))]\iff \mathfrak{A}\models \alpha_u^x[s].$$

Use your recursive definition and the result of exercise 2:

$$\overline{s}(t_u^x) = \overline{s(x|\overline{s}(u))}(t).$$

Exercise 5: Suppose that α is a formula, x a variable symbol, and u a term such that (*) holds:

(*) For any structure ${\mathfrak A}$ and any variable assignment s, we have

$$\mathfrak{A} \models \alpha[s(x|\overline{s}(u))] \iff \mathfrak{A} \models \alpha_u^x[s].$$

Show that for any structure $\mathfrak A$ and any variable assignment s we have

$$\mathfrak{A} \models (\forall x \alpha \to \alpha_u^x)[s].$$

Exercise 4 shows that if α is quantifier-free, then (*) holds. Conclude that if α is quantifier free, then $(\forall x \alpha \to \alpha_u^x)$ is logically valid.) We might try to prove the false claim that for any α , x, u, and \mathfrak{A} , we have

$$\mathfrak{A} \models (\forall x \alpha \to \alpha_u^x)[s]$$

(that is, that $(\forall x \alpha \to \alpha_u^x)$ is logically valid) by proving the equally false claim that (*) holds for all α , x, and u.

(The original claim is certainly false. For example, if α is $\exists y (y \neq x)$ and u is y, then $(\forall x \alpha \rightarrow \alpha_u^x)$ is

$$\forall x \exists y \, y \neq x \ \to \exists y \, y \neq y,$$

which is certainly not logically valid.)

(*) does hold for all quantifier-free formulas, which you showed by induction in exercise (4). The only missing step in the inductive proof that (*) always holds is the \forall step.

Exercise 6: Assume as inductive hypothesis that for any structure \mathfrak{A} and any variable assignment s, we have

$$\mathfrak{A} \models \alpha[s(x|\overline{s}(u))] \iff \mathfrak{A} \models \alpha_u^x[s].$$

Try to show that if $\beta = \forall v \alpha$, then for any structure \mathfrak{A} and any variable assignment s, we have

$$\mathfrak{A} \models \beta[s(x|\overline{s}(u))] \iff \mathfrak{A} \models \beta_u^x[s].$$

What goes wrong? Are there some special cases in which you can succeed in proving this? How far can you push it?