
Math 69
Winter 2013

Monday, January 14

Compactness

Here are some problems from the last class; some have solutions included.
Continue with the ones you did not get to last time, and make sure you
understand the solutions of the others. Then go on to the new problems.

Problem: Prove the following proposition, which will be useful later in
this handout, by induction.

Proposition: For every two truth assignments v and w that agree with
each other on every sentence symbol that occurs in α, we have v(α) = w(α).

Example Solution: We prove the proposition by induction on formulas.

Base Case: If α is a sentence symbol Ai, by assumption v(Ai) = w(Ai).
By the definition of truth assignment, v(Ai) = v(Ai) and w(Ai) = w(Ai).
Therefore

v(α) = v(Ai) = v(Ai) = w(Ai) = w(Ai) = w(α).

Inductive Step for Negation: Suppose that β = (¬α), and the theorem
holds for α; we must show the theorem holds for β. If v and w do not agree
on all the sentence symbols in β, there is nothing to prove. If they do, then
they also agree on all the sentence symbols in α, and by inductive hypothesis1

v(α) = w(α). Therefore, using the definition of truth assignment,

v(β) = v((¬α)) = V al¬(v(α)) = V al¬(w(α)) = w((¬α)) = w(β).

Inductive Step for Binary Connectives: Suppose that β = (α ∗ γ), where
∗ is any binary connective, and the theorem holds for α and γ; we must show
the theorem holds for β. If v and w do not agree on all the sentence symbols
in β, there is nothing to prove. If they do, then they also agree on all the
sentence symbols in α and γ, and by inductive hypothesis v(α) = w(α) and
v(γ) = w(γ). Therefore, using the definition of truth assignment,

v(β) = v((α∗γ)) = V al∗(v(α), v(γ)) = V al∗(w(α), w(γ)) = w((α∗γ)) = w(β).

1The inductive hypothesis is the assumption that the theorem holds for α.
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Problem: Show that the following are tautologically equivalent:

(α1 ∧ α2 ∧ · · · ∧ αn)→ β

αn → (αn−1 → (· · · (α1 → β) · · · ))

Example Solution: We must show that for any truth assignments v,

v((α1 ∧ α2 ∧ · · · ∧ αn)→ β) = v(αn → (αn−1 → (· · · (α1 → β) · · · ))).

First, suppose v((α1 ∧ α2 ∧ · · · ∧ αn)→ β) = T. This can happen in one
of two ways.

Case 1: v(β) = T . In this case we have v(α1 → β) = T , from which it
follows that v(α2 → (α1 → β)) = T , and so forth, until we get to v(αn →
(αn−1 → (· · · (α1 → β) · · · ))) = T . (To be formal, we would argue by
induction on n.)

Case 2: v(α1 ∧ α2 ∧ · · · ∧ αn) = F . In this case, we have v(αi) = F for
some i. It follows that v(αi → (αi−1 → (· · · (α1 → β) · · · ))) = T , from which
it follows that v(αi+1 → (αi → (αi−1 → (· · · (α1 → β) · · · )))) = T , and so
forth, until we get to v(αn → (αn−1 → (· · · (α1 → β) · · · ))) = T .

Second, suppose v((α1 ∧ α2 ∧ · · · ∧ αn) → β) = F. This can happen in
only one way; v(α1 ∧ α2 ∧ · · ·αn) = T and v(β) = F . Since v(β) = F and
v(α1) = T , we have v(alpha1 → β) = F . Since also v(α2) = T , it follows
that v(α2 → (α1 → β)) = F , and so forth, until we get to v(αn → (αn−1 →
(· · · (α1 → β) · · · ))) = F .

Note: Only at the end of the proof is it fair to say the two formulas are
tautologically equivalent. For example, to say at the end of Case 1 above,
“so in this case, the formulas are tautologically equivalent,” would be wrong.
Tautologically equivalent means every truth assignment gives them the same
value, and this has not yet been proven.

For example, suppose you were proving, “Every number is a jabberwock.”
If you first assume n is even and prove n is a jabberwocky, you can’t then
say, “So in the case that n is even, every number is a jabberwock.”
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Problem: Show the following: Σ |= α if and only if Σ ∪ {¬α} is not
satisfiable.

Example Solution: First suppose Σ |= α; we must show that Σ∪{¬α}
is not satisfiable.

To do this, let v be an arbitrary truth assignment, and show that v does
not satisfy Σ ∪ {¬α}.

Case 1: The truth assignment v does not satisfy Σ. Then, since Σ is
contained in Σ ∪ {¬α}, it follows that v does not satisfy Σ ∪ {¬α}.

Case 2: The truth assignment v does satisfy Σ. Since Σ |= α, it follows
that v satisfies α, so v(α) = T and v(¬α) = F . That is, v does not satisfy
¬α, so it follows that v does not satisfy Σ ∪ {¬α}.

Since this covers all the cases, Σ ∪ {¬α} is not satisfiable.

Second, suppose that Σ ∪ {¬α} is not satisfiable, and show that Σ |= α.
To do this, let v be a truth assignment that satisfies Σ, and show v satisfies

α; that is, that v(α) = T .
Suppose not. Then v(α) = F , and so v(¬α) = T . But since v satisfies

everything in Σ, and v also satisfies ¬α, it follows that v satisfies Σ ∪ {¬α}.
This is a contradiction, since Σ∪{¬α} is not satisfiable. Therefore, v satisfies
α.

Note: Notice that in writing up the proof, we analyze the logic of the
statement, and appeal to definitions. Here we want to prove A ⇐⇒ B, so
we prove A =⇒ B and B =⇒ A. To prove A =⇒ B, we assume A and
prove B.

A is Σ |= α, which we have defined to mean “Every truth valuation
that satisfies Σ also satisfies α,” so to prove it, we begin by letting v be an
arbitrary truth assignment that satisfies Σ.

Another Note: Our formal language model represents some of this
mathematical activity. To prove A ⇐⇒ B, we prove A =⇒ B and
B =⇒ A. This is reflected in our formal system by the fact that

{(A =⇒ B), (B =⇒ A)} |= (A ⇐⇒ B).

To prove “Every truth valuation that satisfies Σ also satisfies α,” we let v
be a name for an arbitrary truth valuation that satisfies Σ, and prove that
v also satisfies α. Our formal system is not strong enough to capture this,
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because “for all” is not one of the logical concepts we have built into our
language. The language of first-order logic, or predicate logic, which we will
see next week, does capture this.

Problem: Show the following:

If Σ is satisfiable, then at least one of Σ∪{α} and Σ∪{¬α} is satisfiable.
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A set of formulas Σ is said to be finitely satisfiable if every finite subset
of Σ is satisfiable. We are about to prove the Compactness Theorem: If Σ is
finitely satisfiable, then Σ is satisfiable.

Problem: Prove the following proposition, which we will use as a lemma:

Proposition: If Σ is finitely satisfiable, then at least one of Σ∪{α} and
Σ ∪ {¬α} is finitely satisfiable.

Hint: Suppose not. Since Σ∪{α} is not finite satisfiable, there is a finite
subset Σ0 ⊂ Σ such that Σ0∪{α} is not satisfiable. Similarly, there is a finite
subset Σ1 ⊂ Σ such that Σ1∪{¬α} is not satisfiable. Deduce a contradiction
by finding a finite subset of Σ that is not satisfiable.
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Problem: Here is an outline of the proof of the Compactness Theorem.
Fill in the missing details.

Suppose that Σ is finitely satisfiable. We must show that Σ is satisfiable.
Define, by induction on n,

Σ0 = Σ

Σn+1 =

{
Σn ∪ {An} if this is finitely satisfiable;

Σn ∪ {¬An} otherwise.

Show that each Σn is finitely satisfiable.
Hint: Use induction on n, and the previous proposition.

Now let Σ∗ =
∞⋃
n=0

Σn. Show that Σ∗ is finitely satisfiable.

Hint: Argue that any finite subset of Σ∗ must already be contained in
one of the Σn.
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Note that Σ ⊆ Σ∗, and that for each n, either An or ¬An is in Σ∗ (but
not both). Define a truth assignment v by

v(An) =

{
T An ∈ Σ∗

F ¬An ∈ Σ∗

Show that v satisfies Σ∗, and therefore Σ (showing that Σ is satisfiable),
as follows:

Suppose not. Let α ∈ Σ∗ with v(α) = F . For each sentence symbol An,
define

βn =

{
An An ∈ Σ∗

¬An ¬An ∈ Σ∗

Let Γ be the finite subset of Σ∗ defined by

Γ = {α} ∪ {βn | An occurs in α}.

Because Σ∗ is finitely satisfiable, there is a truth assignment w satisfying Γ.
Deduce a contradiction.

Hint: Show that v and w agree on every sentence symbol contained in α,
and use the proposition on page 1 to deduce a contradiction.
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Deductions, Soundness and Completeness

If Σ is a set of formulas and α is a formula, we define a deduction of α
from Σ to be a finite sequence of formulas

α1

α2
...
αn

whose last element αn is α, such that for each i ≤ n, one of the following
conditions holds:

1. The formula αi is a tautology (a logical axiom.)

2. The formula αi is a member of Σ (a hypothesis.)

3. There are j and k less than i such that

αj = β

αk = (β → γ)

αi = γ.

(The formula αi is derived from αj and αk by modus ponens.)

If there is a deduction of α from Σ, we write Σ ` α. For example,
{(A ∧B)} ` A, as shown by the following deduction:

(1.) (A ∧B)

(2.) ((A ∧B)→ A)

(3.) A

Explain why each line is legitimate according to the definition of deduction.
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According to our definitions, “Every truth valuation satisfying Σ also
satisfies α” is true in case there are no truth valuations that satisfy Σ. That
is, if Σ is not satisfiable, then Σ |= α. For instance,

{A, (¬A)} |= B.

Show that also
{A, (¬A)} ` B.
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Soundness Theorem: If Σ ` α then Σ |= α.

This says that our notion of deduction is sound: We cannot deduce α
from Σ unless α actually does (tautologically) follow from Σ. So, giving a
deduction that demonstrates Σ ` α actually proves Σ |= α.

Prove the Soundness Theorem. Suggestion: Suppose that α1, α2, . . . , αn

is a deduction of α from Σ, and prove by (strong) induction on i that Σ |= αi

for each i ≤ n.
(In strong induction, to prove Σ |= αi, instead of assuming only that

Σ |= αi−1, you assume that for all j < i, Σ |= αj.)
You might or might not want to separately prove as a lemma that, for

any set of wffs Σ and any wffs β and γ, if Σ |= β and Σ |= (β → γ), then
Σ |= γ.
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Completeness Theorem: If Σ |= α then Σ ` α.

This is the converse of the Soundness Theorem. It says that our notion
of deduction is complete: If α tautologically follows from Σ, then we can
deduce α from Σ.

That is, given a set Σ of wffs and a wff α, either there is a deduction of
α from Σ, or there is a translation that makes every wff in Σ true but makes
α false.

Prove the Completeness Theorem.
Suggestion: Use the Compactness Theorem to prove that if Σ |= α then

there is a finite Γ ⊂ Σ such that Γ |= α.
You might also want to prove separately as a lemma that

(αn → (αn−1 → (· · ·α1 → β) · · · ))

is a tautology if and only if

{αn, αn−1, . . . , α1} |= β.

It may help that you have already showed that Σ |= α iff Σ ∪ {(¬α)} is
not satisfiable, and that

(αn → (αn−1 → (· · ·α1 → β) · · · )) |= =| ((αn ∧ αn−1 ∧ · · · ∧ α1)→ β).
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More space for your proof:
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Preview of a homework problem from the textbook: In 1977 it was proved
that every planar map can be colored with four colors. Of course, the def-
inition of “map” requires that there be only finitely many countries. But
extending the concept, suppose we have an infinite (but countable) planar
map with countries C1, C2, C3, . . . . Prove that this infinite planar map can
still be colored with four colors.

Suggestion: Use four infinite (countable) collections of sentence symbols,
one for each color. One sentence symbol, for example, can be used to mean
“Country C7 is colored red.” Form a set Σ1 of wffs that say each country is
colored exactly one color. For example, one sentence in Σ1 will say that C7

is colored exactly one color. Form another set Σ2 of wffs that say, for each
pair of adjacent countries, that they are not the same color. For example, if
C7 is adjacent to C2, then one sentence in Σ2 will say that C2 and C7 are not
colored the same color. Apply compactness to Σ1 ∪ Σ2.

Note: The intention here is that you are given a specific infinite map,
and you use this map to produce your sets of wffs. That is, for each infinite
countable planar map M, there is a set ΣM of wffs, such that applying
compactness to ΣM demonstrates that M can be colored with four colors.
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