Mathematics 69 Winter 2017 Homework Problems Assigned Friday, February 10

For this assignment, \mathcal{L} is the language of first-order logic with equality, countably many constant symbols $c_0, c_1, \ldots, c_n, \ldots$ and no other predicate, constant, or function symbols. We will find all the complete theories of \mathcal{L} .

Note, this isn't really six homework problems, it is one homework problem in 6 parts. You may use soundness, completeness, and compactness.

If \mathfrak{A} is a structure for \mathcal{L} , define an equivalence relation on \mathbb{N} by

$$m \equiv^{\mathfrak{A}} n \iff c_m^{\mathfrak{A}} = c_n^{\mathfrak{A}}$$

(1.) Let \equiv be any equivalence relation on \mathbb{N} . Show that there is a structure \mathfrak{A} for \mathcal{L} such that $\equiv^{\mathfrak{A}}$ is the same relation as \equiv . (Hint: Try letting the elements of $|\mathfrak{A}|$ be equivalence classes.)

(2.) Show that if \mathfrak{A} is any infinite structure for \mathcal{L} , there is a countable structure \mathfrak{B} such that \mathfrak{B} is elementarily equivalent to \mathfrak{A} , and in \mathfrak{B} , infinitely many elements are not named by constant symbols. In other words, we have that $\{b \in |\mathfrak{B}| \mid (\forall n) (b \neq c_n^{\mathfrak{B}})\}$ is infinite. (Hint: Use compactness.)

(3.) Show that if \mathfrak{A} and \mathfrak{B} are countable structures for \mathcal{L} in which infinitely many elements are not named by constant symbols, and $\equiv_{\mathfrak{A}}$ is the same relation as $\equiv_{\mathfrak{B}}$, then \mathfrak{A} is isomorphic to \mathfrak{B} .

(4.) Suppose \mathfrak{A} and \mathfrak{B} are two structures for \mathcal{L} , each of which is countable (or possibly finite). Which of the following conditions imply which others? In each case, explain why, or give a counterexample.

- (a.) \mathfrak{A} is isomorphic to \mathfrak{B} .
- (b.) \mathfrak{A} is elementarily equivalent to \mathfrak{B} .
- (c.) $\equiv^{\mathfrak{A}}$ is the same relation as $\equiv^{\mathfrak{B}}$.

(5.) Suppose \equiv is an equivalence relation on N. Define

$$\Sigma_{\equiv} = \{ c_n = c_m \mid m \equiv n \} \cup \{ c_n \neq c_m \mid n \not\equiv m \}.$$

Show that if \equiv has infinitely many equivalence classes, then $Cn \Sigma_{\equiv}$ is a complete theory. (Suggestion: Show that \mathfrak{A} is a model of $Cn \Sigma_{\equiv}$ if and only if $\equiv_{\mathfrak{A}}$ is the same relation as \equiv . Use (2) and (3) to show that if \mathfrak{A} and \mathfrak{B} are any two models for $Cn \Sigma_{\equiv}$, then there are structures \mathfrak{A}^* and \mathfrak{B}^* elementarily equivalent to \mathfrak{A} and \mathfrak{B} such that \mathfrak{A}^* and \mathfrak{B}^* are isomorphic.)

(6.) Suppose \equiv is an equivalence relation on \mathbb{N} with finitely many equivalence classes. Describe all the complete (consistent) theories T with the property that $Cn \Sigma_{\equiv} \subset T$, by saying what sentences you need to add to Σ_{\equiv} to produce a set of axioms for T. (Hint: Consider the possible ways to get finite or countable models of $Cn \Sigma_{\equiv}$ that are not isomorphic. Then consider whether these non-isomorphic structures have different theories.)

Since every complete theory for \mathcal{L} contains some $Cn \Sigma_{\equiv}$, problems (5) and (6) together describe all the complete consistent theories of \mathcal{L} .