
Mathematics 69
Winter 2017

Final Paper Assignment

Due Dates:

Monday, February 20 — Final paper assigned.
Friday, February 24 — Optional early submission of preliminary questions (comments

returned by Wednesday, February 27).
Monday, February 27 — Preliminary questions due in class.
Friday, March 3 — Optional early submission of first draft (comments returned by Mon-

day, March 6).
Monday, March 6 — First draft due in class. Draft will be graded Credit/No Credit

based on timeliness and completeness. Complete citations are required; this may be only a
draft, but it is being submitted as your work.

Monday, March 13 — Final Draft due at my office (Kemeny 330) or electronically by
3pm.

Synopsis

Your goal for this assignment will be twofold. First, you will connect what you have
learned in this class with a topic outside of logic. This may include using first order logic to
prove something in a different field, using some other branch of mathematics to prove a fact
about logic, or both. Second, you will write a formal, properly referenced, mathematical
paper.

There are five different topics included in this packet. You will choose one to write your
paper on. Each topic includes a series of questions that you will need to answer in your
writeup. You should read each of the problems carefully and choose the one that interests
you the most. Next, write up solutions to the “preliminary” questions and turn them in
by Monday, February 27. These questions are meant to give you an indication of what will
be involved in completing the assignment proper. If the preliminary questions seem terribly
difficult you might consider choosing a different topic. Next, you should write up proofs
for the main portion of the assignment. These proofs are going to form the bulk of your
paper. I will be available during office hours or by appointment if you need help solving your
chosen problem. You should definitely start working on your paper before your preliminary
questions are graded and returned.

The style of this paper should be similar to the style of an expository article in a mathe-
matics journal, which is not the same as either an essay for an English class or a homework
paper for a math class. If you look on the course web site, on the “General Information”
page, under “Exams,” you will find a number of resources that you may find helpful. To get
an idea of what a mathematics paper looks like you could also go to the Cook Math Col-
lection on the third floor of Berry Library and peruse some of the articles in Mathematics
Magazine. The basic idea is that your paper will include all the usual components of an essay,
incorporated with mathematical proofs written in an expository format using full sentences.
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Another important facet is that the paper must be properly referenced, something which is
discussed below. Your first draft will be due on Monday, March 6. This draft will be graded
credit/no credit by completeness. That is, I will comment on, but not grade based on, the
correctness of your proofs and grammar and the clarity of your writing, and I will give you
full credit as long as you have included references and all the questions in the assignment
are addressed. In other words it needs to be a “true” first draft.

The final draft will be graded based on the quality of your proofs and your writing and
is due by 3pm on Thursday, March 14. It should be turned in electronically or at my office
in Kemeny 330. To turn in your paper electronically, you must email me a pdf file.

Honor Code and Citing Sources

There are some parts of this assignment that you may discuss with other students or
with me; the problems detail which portions those are. However, if you do so, you must
acknowledge any help you get. Your acknowledgment should appear in your paper as a
citation and on your References page as a source. It should not appear as an attached note
addressed to me. If you are not sure about how to cite sources or list them on your References
page, you can consult the booklet Sources, which is available online, RWIT, or me.

Do not forget that whenever you use another person’s words you must indicate that
you are using a direct quotation. This applies to formulas as well. Generally we do not
put quotation marks around formulas, whatever their source. Often we display formulas as
we would a lengthy quotation, but we do that with our own formulas as well as others’.
Therefore, it is important to state clearly that you have taken a specific formula from a
particular book, article or other source. (See the Compactness Theorem example below.)
Well-known facts that were known to you before you started writing this paper (this includes
pretty much everything we’ve learned about first-order logic) generally do not have to be
cited, but specific ways of phrasing them do, and whenever possible you should give credit
to the people who proved theorems. For example, the Completeness Theorem and the
Compactness Theorem are well-known. Your paper could say, without further attribution:

Theorem 1 (Gödel’s Completeness Theorem). Every consistent set of formulas is
satisfiable.

However, if you need to look up the statement of the Compactness Theorem in Enderton, or if
you use Enderton’s way of phrasing the Compactness Theorem, you should give appropriate
credit:

Theorem 2. Two equivalent versions of the Compactness Theorem, as stated in
Enderton’s textbook [1, p. 144], are:

1. If Γ |= ϕ, then for some finite Γ0 ⊆ Γ we have Γ0 |= ϕ.

2. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Other main theorems in Enderton can similarly be treated as common knowledge, but the
names Enderton uses for theorems are sometimes specific to the textbook. The Completeness
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Theorem, the Compactness Theorem, and the theorems named after individuals generally go
by those names. However, if you have occasion to refer to the “Enumeration Theorem,” for
example, you should not only cite Enderton but also tell the reader what the Enumeration
Theorem says. Similarly, Enderton’s notation is not necessarily standard. if you are making
significant use of that notation it would be appropriate to, at the very least, give a reference
for your notation so your reader knows where to go to figure out what you’re saying. (I say
“at the very least” because you could also explain the notation in your paper. You can also
use English words in place of formal notation, and you should do so whenever the English
is clearer.)

All these considerations apply to any results you use from outside of class. For exam-
ple, the fact that any two vector spaces with bases of the same cardinality are isomorphic
(assuming you knew this) can be used without reference. However, if you actually look up
and use a theorem in one of your textbooks you should reference it. If you are in doubt,
please ask. And remember, it is better to include an unnecessary citation than to leave out a
required one. Finally, first drafts of papers, even though they are drafts, are being submitted
as your work and should include all appropriate citations and a References page. The honor
code applies.

Grading: The tables on the next two pages show the things I will consider as I grade your
paper. The listed items are not weighted equally; mathematical correctness, for example,
is more important than grammatical correctness. I am not assigning a specific number of
points per item, but will assign grades based on an overall assessment of each paper, of which
these items are the ingredients.

Formatting, Etc.

Your paper should be typed on one side of the paper, double-spaced, with reasonable
margins, and with your name and the page number on every page. Don’t use too small
a font, please (12 point is okay). While it is acceptable to write in formulas and special
symbols by hand, using an equation editor is preferable. In any case, make sure any hand-
written additions are legible. If you haven’t been using LATEXfor your homework, this might
be a good time to learn. Pronounced la-tek, LATEXis a typesetting program used to write
up the vast majority of modern mathematics. Once again, I will be available during office
hours and by appointment.

References

[1.] Enderton, Herbert B. A mathematical introduction to logic. Second edition. Har-
court/Academic Press, 2001.
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Ingredients in Grades for Papers

Most items are ordered from excellent to inadequate, with each paper falling into one
category. The exception is “extras.” For this item, a paper may or may not satisfy each
category independently, and to a greater or lesser extent, and no one category is more
important than another.

MATHEMATICS assessment

Coverage: Includes all required items
Includes all major items
Misses at least one major item
Significantly incomplete

Content: Correct and complete
Correct and mostly complete
Mostly correct and mostly com-
plete
At least one significant gap or er-
ror
Significantly incorrect
Significantly incomplete

Further: Particularly good response to
open-ended question
Substantial response to open-
ended question
Small response to open-ended
question
No response to open-ended ques-
tion

Extras: Something notably elegant
Something notably creative
Unusually good explanation
Illustrations/examples/intuition

Writing standards are on the next page.
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WRITING assessment

Grammar etc: Impeccable
Mostly fine
Some errors
Distracting or confusing errors

Mathese: Technical language used correctly
Technical language mostly used
correctly
Some incorrect use of technical
language
Significant errors in use of techni-
cal language

Structure: Well-organized, logical flow clear
to reader
Mostly well-organized with clear
flow
Some problems with organization
and flow
Significant problems with organi-
zation and flow

Style: Clear, readable, and graceful
Clear and readable
Mostly clear and readable
Mostly clear
Significant problems with clarity

Citations: Correct and complete with list
of references, additional relevant
sources
Correct and complete with list of
references
Mostly as above
Complete citations, no list of ref-
erences
Incomplete citations
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Problem 1. Vector Spaces over the Rationals

The goal for this problem is to describe a language and a set of axioms for vector spaces
over the rationals, to explore what kind of statements we can make about rational vector
spaces using first order logic, and to investigate the completeness of our theory. The reason
we are using vector spaces over Q is that this will allow us to use a countable language.
The prerequisite for this problem is an understanding of basic axiomatic vector space theory.
Before you begin to work on the assignment proper you should write up answers to the
following preliminary questions.

Preliminary questions

1. Define a language L for vector spaces over the rational numbers. You should implement
scalar multiplication by including a one place function symbol for each rational number.

2. Describe a set Σ of sentences of L such that any structure that satisfies Σ is a vector
space over the rationals. Hint: Σ will be infinite; be aware that you cannot quantify
over the rational numbers.

3. Let A be the vector space Q2 with the usual vector addition and scalar multiplication.
Recall that automorphisms of A (in our sense) are just vector space automorphisms
and that any such function can be produced by mapping one basis of A onto another
(or the same) basis of A. What elements of Q2 are definable in L? What subsets of
Q2 are definable? Hint: Suppose v and w are two different vectors in A; when is there
an automorphism taking v to w?
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Assignment

Your paper should do (at least) the following six things. It is all right to discuss the first
four items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Items 5 and beyond you should not discuss with anyone else.

1. Describe a language L for vector spaces over Q and give a set of sentences Σ such that
a structure A for L is a vector space over Q if and only if A is a model of Σ.

2. Show that for every n there is a set of formulas Γn such that a model A of Σ has
dimension greater than or equal to n if and only if there is a variable assignment s for
A such that A with s satisfies Γn. Show that there is a set of formulas Γ∞ such that a
model A of Σ has infinite dimension if and only if there is a variable assignment s for
A such that A with s satisfies Γ∞.

3. Show that CnΣ is not a complete theory; give a sentence σ and show that Σ 6` σ and
Σ 6` ¬σ. (Hint: The zero-dimensional vector space has special properties.)

4. Show that Σ ∪ {σ} and Σ ∪ {¬σ} both give us complete theories. Hint: Show that if
A is a model for Σ with non-zero dimension then ThA ∪ Γ∞ is satisfiable. Then show
that any two countable vector spaces over Q with infinite dimension are isomorphic.
Alternatively, you could show that the theory of non-zero vector spaces over Q is
categorical in the cardinality of the reals.

The remaining items are not included in this preliminary version of the assignment. This
is to make it easy for you to talk things over with other people, as you decide which topic
to choose, without excessive worry about honor code violations.
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Problem 2. Abelian Groups

The goal for this problem is to describe a language and a set of axioms for abelian groups,
and to explore what the theory of abelian groups can tell us about completeness. Prerequisite
for this problem is an understanding of axiomatic group theory and axiomatic vector space
theory. Before you begin work on the assignment proper you should write up answers to the
following preliminary questions.

For this problem we will use the following definitions. An element g of a group G has
order n if n is the smallest positive natural number such that

ng = g + · · ·+ g︸ ︷︷ ︸
n times

= 0.

For example, g has order 2 if g 6= 0 and g + g = 0. An element is said to be torsion free
if it does not have order n for any n ∈ N with n > 0. A group is said to be torsion free if
each of its elements, other than the identity, is torsion free. Lastly, we say that a group G
is divisible if for each g ∈ G and n ∈ N with n > 0 there exists h ∈ G such that

nh = h+ · · ·+ h︸ ︷︷ ︸
n times

= g.

Preliminary Questions

1. Define a language L and a set of axioms Σ such that any model that satisfies Σ is an
abelian group. Next, define a set of axioms T so that any model which satisfies Σ ∪ T
is a divisible torsion free abelian group.

2. Show that any divisible torsion free abelian group has a Q-vector space structure. Hint:
Show that if G is such a group, n ∈ N with n > 0 and g ∈ G then there is a unique
h ∈ G such that nh = g.

Note that to show there is a Q-vector space structure, you must define scalar multi-
plication (and prove it is well-defined).

3. Define a set of set of axioms S such that any model that satisfies Σ ∪ S is an abelian
group in which each element other than the identity has order two. Can we give a
model for Σ∪S a vector space structure? Hint: Be creative in your choice of the scalar
field.
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Assignment

Your paper should do (at least) the following four things. It is all right to discuss the
first three items with other students or with me if you have trouble with them, remembering
to acknowledge any help you get. Items 4 and beyond you should not discuss with anyone
else.

1. Define a language L for groups and give a set of sentences Σ such that a structure A
for L is an abelian group if and only if it is a model of Σ.

2. Define a set of sentences T such that a structure A for L is a model for Σ ∪ T if and
only if it is a divisible torsion free abelian group. Show that Σ∪T is categorical in the
cardinality of the reals but not countably categorical. Hint: You will need to view a
divisible torsion free abelian group as a vector space over the rationals.

3. Define a set of sentences S such that a structure A for L is a model for Σ ∪ S if and
only if A is an abelian group in which every element other than the identity has order
2. Show that A is countably categorical.

The remaining items are not included in this preliminary version of the assignment. This
is to make it easy for you to talk things over with other people, as you decide which topic
to choose, without excessive worry about honor code violations.
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Problem 3. Random Graphs

The goal for this problem is to use the mechanics of first order logic to explore the theory
of random finite graphs and prove that the “almost sure” theory of graphs is complete and
decidable. A knowledge of graphs is not necessary to solve this problem but may help to
motivate some of the questions. A basic knowledge of probability, however, is a prerequisite.
Before you begin work on the assignment you should write up the answers to the following
preliminary questions.

For this problem we will define a graph to be a set G of vertices along with a relation
R on G which tells us if there is an edge between two vertices. We require that the edges
be “undirected” and that no vertex has an edge back onto itself. In the interests of being
a specific as possible, let L contain a single binary relation symbol R. Our graph axioms
are then given by ∀x¬Rxx and ∀x∀y (Rxy → Ryx). Any structure for L satisfying these
axioms is a graph. Next, for each n ∈ N with n > 0, let ϕn be the “extension axiom”

∀x1 · · · ∀xn∀y1 · · · ∀yn

(
n∧

i=1

n∧
j=1

xi 6= yj → ∃z
n∧

i=1

(z 6= xi ∧ z 6= yi ∧Rxiz ∧ ¬Ryiz)

)
.

Lastly, we define Σ to be the set

{∀x¬Rxx, ∀x∀y (Rxy → Ryx), ∃x∃y x 6= y} ∪ {ϕn | n = 1, 2, 3, . . . }.

Preliminary Questions

1. Show that a model of Σ is a graph where for any finite disjoint sets of vertices X and
Y we can find a vertex not contained in X or Y with edges going to every vertex in X
and no vertex in Y .

2. Show that there is a countable model of Σ. Hint: First show that given any countable
graph G there is a graph G such that G is countable, G contains G as a subgraph, and
if X and Y are disjoint finite subsets of G then there is a z ∈ G−G such that for all
x ∈ X, Rxz, and for all y ∈ Y , ¬Ryz.

3. Suppose we construct a graph with vertices {1, 2, ..., N} by independently deciding
whether there is an edge between i and j for i 6= j with probability 1

2
. Let GN be

the set of all graphs with vertices {1, 2, ..., N}. What is the probability that we have
constructed any particular element of GN?
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Assignment

Your paper should do (at least) the following five things. It is all right to discuss the first
three items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Items 4 and beyond you should not discuss with anyone else.

1. Show that a model for Σ is a graph where for any finite disjoint sets X and Y we can
find a vertex not contained in X or Y with edges going to every vertex in X and no
vertex in Y . Show that Σ is satisfiable and countably categorical. Is CnΣ complete and
decidable? Hint: You already showed that Σ is satisfiable. Use an argument similar
to the proof that countable dense linear orderings without endpoints are countably
categorical to show that Σ is countably categorical. In particular, given two models,
list the elements of each and build your isomorphism one element at a time.

2. Let GN be the set of all graphs with vertices {1, 2, ...N}. Consider a probability distri-
bution on GN that makes all graphs equally likely. For any sentence ψ let

pN(ψ) =
|{G ∈ GN : G |= ϕ}|

|GN |
,

the probability that a random element of GN satisfies ψ. Show that

lim
N→∞

pN(ϕn) = 1 for n = 1, 2, 3, . . .

Hint: This argument mostly relies on probability theory. You may find it easier to
show that

lim
N→∞

pN(¬ϕn) = 0.

3. For any sentence ψ, show that either lim
N→∞

pN(ψ) = 1 or lim
N→∞

pN(ψ) = 0.

The remaining items are not included in this preliminary version of the assignment. This
is to make it easy for you to talk things over with other people, as you decide which topic
to choose, without excessive worry about honor code violations.

A note on this problem: The extension axioms deal with disjoint pairs of nonempty sets
of size at most n. The countably-categorical proof requires considering an arbitrary disjoint
pair of finite sets (empty or not). The probability calculations most naturally consider pairs
of nonempty sets of size exactly n. Be sure you have considered these issues, and dealt with
them appropriately.
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Problem 4. Dense Linear Orderings

This goal for this problem is to use the theory of dense linear orderings to prove interesting
facts about first order logic. In order to solve this problem you need to be comfortable with
the reals, the rationals, and the concept of a least upper bound.

It will be convenient to work with strict linear orderings; intuitively, with < rather than
≤. A strict linear ordering is transitive, antisymmetric, and irreflexive: for all x, it is not the
case that x < x. Before you begin work on the assignment you should write up the answers
to the following preliminary questions.

Preliminary Questions

1. Write down a language L and a set of axioms Σ for dense linear orderings without
endpoints. We showed in class that Σ is countably categorical. Write down an outline
of that proof.

2. A set D in a model A for Σ is dense if for all x < y in |A| there exists z ∈ D such that
x < z < y. A set is codense if its complement is dense. Give an example of a dense,
codense set in Q. Suppose we add the unary predicate P to L. Write down a sentence
that will guarantee that P is given by a dense, codense set.

3. Prove the following two general results about first order logic.

(a) For any language L, two L-structures A and B are elementarily equivalent if and
only if they are elementarily equivalent for every finite sublanguage.

(b) If L is countable, T is an L-theory with no finite models, and any two countable
models of T are elementarily equivalent, then T is complete.
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Assignment

Your paper should do (at least) the following four things. It is all right to discuss the
first three items with other students or with me if you have trouble with them, remembering
to acknowledge any help you get. Items 4 and beyond you should not discuss with anyone
else.

1. Write down a language L and give a set of axioms Σ such that a structure for L is a
model for Σ if and only if it is a dense linear ordering without endpoints.

2. Let L3 be L with the added constants symbols c0, c1, . . . . Let Σ3 be Σ with sentences
asserting c0 < c1 < · · · . Show that Σ3 has exactly three countable models up to
isomorphism. Hint: Consider the questions: Does c0, c1, c2, . . . have an upper bound?
a least upper bound?

3. Let L4 be L3 with the unary predicate P . Define a sentence σ that guarantees that
for any model A of Σ we have A |= σ if and only if PA is a dense codense subset of A.
Let

Σ4 = Σ3 ∪ {σ} ∪ {¬Pci}∞i=0.

Show that Σ4 has exactly four countable models up to isomorphism.

The remaining items are not included in this preliminary version of the assignment. This
is to make it easy for you to talk things over with other people, as you decide which topic
to choose, without excessive worry about honor code violations.
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Problem 5. Game Theory

The goal for this problem is to use techniques from game theory to prove facts about
models in first order logic. We will use Ehrenfeucht-Fräıssé games to prove that the theory
of discrete linear orderings without end points is complete. A prerequisite for this problem
is a rather basic knowledge of game theory. Before you begin work on the assignment you
should write up the answers to the following preliminary questions.

Suppose we have a game G with two players named Alice and Bob respectively. A strategy
for Bob is a function τ such that if Alice’s first n moves are c1, . . . , cn then Bob’s nth move
will be τ(c1, . . . , cn). We say that Bob uses the strategy τ if the play of the game looks like:

Alice: c1; Bob: τ(c1); Alice: c2; Bob: τ(c1, c2); . . .

We say that τ is a winning strategy for Bob if for any sequence of plays c1, c2, . . . that Alice
makes, Bob will win by following τ . We define winning strategies for Alice analogously.
Next, let L be a language with no function symbols. Suppose we have two structures A and
B for L with |A| ∩ |B| = ∅. If A ⊆ |A| and B ⊆ |B| and f : A → B we say that f is a
partial embedding if the function

f ∪ {(cA, cB) : c is a constant in L}

is a bijection preserving all relations of L. We will define an infinite two-player game
Gω(A,B) between two players called Alice and Bob. A play of the game will consist of
a (countably) infinite number of stages. Together they will build a partial embedding f from
A to B. At the ith stage, Alice moves first and either plays ai ∈ |A|, challenging Bob to put
ai into the domain of f , or bi ∈ |B|, challenging Bob to put bi into the range of f . If Alice
plays ai then Bob must play bi ∈ |B|, whereas if Alice plays bi then Bob must play ai ∈ |A|.
Bob wins the game if f = {(ai, bi) : i = 1, 2, . . . } is the graph of a partial embedding.
Finally, we say that a linear order is discrete if each element has an immediate successor and
predecessor. It will be convenient to work with strict linear orderings; intuitively, with <
rather than ≤. A strict linear ordering is transitive, antisymmetric, and irreflexive: for all
x, it is not the case that x < x.

Preliminary Questions

1. Prove that if A and B are countable L structures then Bob has a winning strategy in
Gω(A,B) if and only if A is isomorphic to B.

2. Reconstruct our proof that any two countable dense linear orderings without endpoints
are isomorphic in terms of the game Gω(A,B).

3. Define a language L and a set of axioms Σ for the theory of discrete linear orders
without endpoints. Show that every model of Σ is of the form (L×Z, <) where L is a
linear order and < is the lexicographic order ((x,m) < (y,m) if either x < y, or x = y
and m < n). Also show that every order of this form is a model of Σ. Hint: consider
the equivalence relation a ≡ b if and only if there are finitely many elements between
a and b.
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Assignment

Your paper should do (at least) the following five things. It is all right to discuss the
first four items with other students or with me if you have trouble with them, remembering
to acknowledge any help you get. Item 5 you should not discuss with anyone else.

1. Let L be the language with the two place predicate <. Define a set of axioms Γ such
that A is a model for Γ if and only if A is a dense linear order without endpoints.
Define a set of axioms Σ such that A is a model for Σ if and only if A is a discrete
linear order without endpoints.

2. Prove that if A and B are countable structures for L then Bob has a winning strategy
in Gω(A,B) if and only if A is isomorphic to B. Use this theorem to prove that any
two countable dense linear orderings without endpoints are isomorphic.

3. Show that every model of Σ is of the form (L× Z, <) where L is a linear order and <
is the lexicographic order.

4. For each n = 1, 2, . . . we define a two player game Gn(A,B) between Alice and Bob.
The game will have n rounds. On the ith round Alice plays first and either plays
ai ∈ |A| or bi ∈ |B|. On Bob’s turn, if Alice played ai then Bob plays bi ∈ |B| and if
Alice played bi then Bob plays ai ∈ |A|. The game stops after the nth round and Bob
wins if {(ai, bi) : i = 1, . . . , n} is the graph of a partial embedding from A into B.
We call Gn(A,B) an Ehrenfeucht-Fräıssé game. You may use the following theorem
without proof.

Theorem. Let L be a finite language without function symbols and let A
and B be L structures. Then A is elementarily equivalent to B if and only
if Bob has a winning strategy in Gn(A,B) for all n.

Using the above theorem, show that any model (L×Z, <) of Σ is elementary equivalent
to (Z, <). Hint: If x = (a, i), y = (b, j) ∈ L×Z we can define a distance function d by
d(x, y) = |i− j| if a = b and d(x, y) = ∞ if a 6= b. The problem for Bob is that Alice
can play elements that are infinitely far apart in L×Z and force Bob to play elements
that are finitely far apart in Z. However, since Bob knows how long the game will last
he can play elements sufficiently far apart to avoid conflicts.

The remaining items are not included in this preliminary version of the assignment. This
is to make it easy for you to talk things over with other people, as you decide which topic
to choose, without excessive worry about honor code violations.
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