Exam 1 Review Sheet

Counting

Permutations: $P(n, k)=$ the number of length k sequences (without repetition) from a set of size n. $P(n, k)=n!/(n-k)$!

Combinations: $\binom{n}{k}=$ the number of size k subsets of a set of size $n .\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Multiplication principle: n things are to be decided, there are m_{i} choices for the $i^{t h}$ decision. There are $m_{1} \cdot m_{2} \cdot m_{3} \cdots m_{n}$ ways to make the decisions.

Sets: $n(A)$ is the size of the set $A \cdot n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

Probability

Probability distributions: $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are all the possible outcomes. Then $0 \leq p\left(x_{i}\right) \leq 1$ for all x_{i} and $\sum p\left(x_{i}\right)=1$.

If each outcome is equally likely, for any event $A, p(A)=n(A) / n(S)$ where S is the sample space.
$p(A)+p\left(A^{\prime}\right)=1$
Conditional Probability: $p(A \mid B)=\frac{p(A \cap B)}{p(B)}$
Product Rule: $p(A \cap B)=p(A) p(B \mid A)$. For independent events, $p(A \cap B)=p(A) p(B)$.
Bayes' Theorem: Where $B_{1}, B_{2}, B_{3}, \ldots, B_{k}$ are mutually exclusive events so that they're union is the whole sample space,

$$
p\left(B_{i} \mid A\right)=\frac{p\left(B_{i}\right) p\left(A \mid B_{i}\right)}{p\left(B_{1}\right) p\left(A \mid B_{1}\right)+p\left(B_{2}\right) p\left(A \mid B_{2}\right)+\cdots+p\left(B_{k}\right) p\left(A \mid B_{k}\right)}
$$

Expected Value: $E[X]=\sum x_{i} p\left(x_{i}\right)$

Statistics

Sample mean: $\bar{x}=\frac{1}{n} \sum x_{i}$
Population mean: $E[x]=\mu=\sum x p(x)$
Median: Item $n / 2$ when the outcomes are listed in increasing order.
Mode: The most frequent outcome
Sample Variance: $s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$
Sample Standard Deviation: $s=\sqrt{s^{2}}$
Population Variance: $\sigma^{2}=E\left[(x-\bar{x})^{2}\right]$
Population Standard Deviation: $\sigma=\sqrt{\sigma^{2}}$
Normal Distribution: $e^{-x^{2}}$ has $\mu=0$ and $\sigma=1$. $p_{\text {norm }}(x<a)$ is given in tables.
z-scores: $z=\frac{x-\mu}{\sigma} \cdot p(x<a)=p_{\text {norm }}\left(z<\frac{a-\mu}{\sigma}\right)$ when x has a normal distribution with mean μ and standard deviation σ.

Binomial Probability

If the probability of success is p, then the probability of k successes in n trials is $\binom{n}{k} p^{k}(1-p)^{n-k}$.
The expected number of successes is $n p$.
Binomial distributions are nicely approximated with normal distributions of mean $n p$ and standard deviation $\sqrt{(n p(1-p)}$.

Data Organization

Trees organize probability into mutually exclusive events.
histograms display relative size of events.
Venn Diagrams divide the world into events.
Frequency Distributions make data easier to work with.

