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Typically, when referring to a model-based classification, the mixture distribution

approach is understood. In contrast, we revive the hard-classification model-based

approach developed by Banfield and Raftery (1993) for which K-means is equiv-

alent to the maximum likelihood (ML) estimation. The next-generation K-means

algorithm does not end after the classification is achieved, but moves forward to

answer the following fundamental questions: Are there clusters, how many clusters

are there, what are the statistical properties of the estimated means and index sets,

what is the distribution of the coefficients in the clusterwise regression, and how

to classify multilevel data? The statistical model-based approach for the K-means

algorithm is the key, because it allows statistical simulations and studying the prop-

erties of classification following the track of the classical statistics. This paper

illustrates the application of the ML classification to testing the no-clusters hypoth-

esis, to studying various methods for selection of the number of clusters using

simulations, robust clustering using Laplace distribution, studying properties of the

coefficients in clusterwise regression, and finally to multilevel data by marrying the

variance components model with K-means.
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1 INTRODUCTION

K-means is the most popular clustering algorithm. A review

of the technique is outside the scope of the present work—we

refer the reader to a highly cited paper by Jain [20] for a

general discussion.

Typically, K-means is referred to as a hard classification

clustering technique because the answer to whether an obser-

vation belongs to a cluster is either yes or no. In contrast,

another popular classification algorithm based on a mixture

(in most instances a Gaussian mixture) distribution is a soft

classification technique because the answer on cluster mem-

bership is expressed in terms of a probability. An advantage

of the mixture distribution approach is that the member-

ship indicator is a continuous parameter (probability) and

therefore smooth optimization methodology applies so that

maximization of the likelihood function can be effectively

achieved by the expectation-maximization (EM) algorithm

[26]. An attractive feature of the Gaussian mixture is that

it is a model-based classification approach; therefore, tra-

ditional likelihood-based methodologies, such as hypothesis

testing or the AIC/BIC criteria, can be employed to facil-

itate testing of the components or to select the number of

clusters. It is well forgotten that the K-means also can be

viewed as a model-based approach with minimization of

the total within sum of squares equivalent to the maximum

likelihood (ML). However, unlike the mixture distribution

approach, the classical ML theory fails here because (1) the

number of parameters, as the partition index sets, exponen-

tially increases with n and K (typically referred to as an

HP-hard problem); (2) parameters as index sets are integers

(discrete) and therefore the Wald and likelihood ratio tests

do not apply (the parameter value must be an inner point

of the parameter space); and (3) the AIC/BIC criteria are

not applicable because of the discontinuity of the parameter

space.
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Statistical model-based hard classification was popularized

and developed by Banfield and Raftery [2], although they

do not mention the term “K-means algorithm.” Remarkably,

not much has been done in terms of developing and extend-

ing the model-based K-means algorithm since then. Perhaps

the most attractive feature of model-based cluster analysis,

compared to a method-based approach, is that data can be gen-

erated according to the model, and the statistical properties of

clusterization can be studied via simulations.

The goal of the present work is to revive and extend the

ideas presented by Banfield and Raftery by viewing the

K-means algorithm as the ML technique in several directions:

(1) testing the presence of clusters and computing the p-value;

(2) identification of the number of clusters; (3) viewing the

K-medians algorithm as the ML based on the Laplace distri-

bution; (4) developing a semisupervised K-means algorithm

in the case of a priori information; (5) developing the clus-

terwise K-means regression; and, finally, (6) extension of the

K-means algorithm to clustering of multilevel data in the pres-

ence of replicates. However, it is not the goal of this work to

develop new numerical algorithms. Instead, our hard classifi-

cation procedures are reduced to the repeated application of

the existing and efficient Hartigan-Wong [17] algorithm. In

the present work, only the spherical Gaussian distribution is

assumed; an extension to the case when observations are het-

eroscedastic or correlated, as studied by Banfield and Raftery

[2], can be carried out along the lines of the spherical case

and is a topic of future research.

2 SPHERICAL GAUSSIAN DISTRIBUTION

In this section, we consider the simplest model-based hard

classification problem leading to the K-means algorithm. It is

assumed that n independently distributed observation vectors

x1, x2, ..., xn ∈ Rm are independent and belong to K groups

specified by the index sets C1, C2, ..., CK . These index sets

partition the set {1, 2, ...., n} so that ∪K
k=1

Ck = {1, 2, … , n}
and Ck ∩Cl =∅ for k≠ l. The distribution of observations

from each cluster is identical to the common variance. More-

over, it is assumed that the distribution is spherical Gaussian:

xi ∼ 𝒩 (𝝁k, 𝜎
2Im), i ∈ Ck. (1)

The parameters to estimate are the means {𝝁k, k= 1, 2,

..., K}, the common variance 𝜎2, and, most importantly, the

index sets (C1, C2, ..., CK). The twice-negative log-likelihood

function takes the form

𝑚𝑛 ln 𝜎2 + 𝜎−2

K∑
k=1

∑
i∈Ck

‖xi − 𝝁k‖2. (2)

Differentiating with respect to 𝝁k, we find that, given the

index sets, the ML estimator is

xk =
1

nk

∑
i∈Ck

xi,

where nk is the number of elements in the cluster k.

Differentiating (2) with respect to 𝜎2, we find that the ML

estimation is equivalent to the minimum of the total within

sum of squares:

SK = min
C1,… ,CK

K∑
k=1

∑
i∈Ck

‖xi − xk‖2. (3)

Thus, ML with a spherical Gaussian distribution is equiva-

lent to the traditional K-means algorithm. The minimization

of criterion (3) is not trivial and may have multiple minima,

so several starting points may be used to confirm that the

global minimum is found. An ML estimate of the variance is

𝜎2 = (𝑚𝑛)−1SK , as follows from (2).

An immediate implication of the fact that the K-means

algorithm solves the ML problem is an obvious but some-

times ignored consequence that the K-means algorithm is

applicable only to normally distributed data with equal vari-

ance. Consequently, the K-means algorithm is not justified

for uniformly distributed data or when vector components are

measured on different scales and therefore have different vari-

ances. One might suggest normalizing the original data by

subtracting the gross mean and dividing by the standard devi-

ation, but such normalization would be suboptimal because

the variance should be computed around the mean in each

cluster, not around the gross mean.

2.1 Testing the presence of clusters

A fundamental question is: Are there clusters? A false clus-

terization is illustrated in Figure 1. The K-means algorithm

with 2 clusters (K = 2) is applied to n= 100 points generated

from the same normal distribution with zero mean, unit vari-

ance, and zero correlation (spherical Gaussian distribution).

The K-means algorithm divides these points into 2 clusters,

but in fact there are no clusters because points are generated

from the same distribution. Visualization may be deceiving.

Needless to say, the absence of clusters becomes even more

difficult to detect for higher dimensions (m> 2).

We aim to test whether points {xi, i= 1, 2, ..., n} belong

to the same normal population—that is, there are no clusters.

This hypothesis will be referred to as the no-clusters hypoth-

esis. Clustering tendency bothered mathematicians from the

very beginning [42], but most of the work has been done in an

asymptotic setup when n→ ∞ . We mention just a sample of

authors: Pollard [27], Bryant and Williamson [7], Bock [5],

and Jain and Dubes [19]. Unlike previous research, we want

to compute the p-value for testing the no-clusters hypothe-

sis for small n. The idea is to use the established MANOVA

test statistic when the index sets are known. The key obser-

vation is that, for the K-means algorithm, the index sets are

unknown and subject to estimation. Therefore, a distribution,

such as the F-distribution, does not hold. This distribution

will be derived via simulations; see also refs. 25, 22, 30.
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FIGURE 1 The K-means algorithm with K = 2 for a sample of 100 random points from the same bivariate normal distribution with zero mean and unit

variance. A wrong clusterization is shown in the right plot (the same points)!

We say that there are no clusters if the null hypothesis H0:

𝝁1 =𝝁2 = · · · =𝝁K is not rejected with the given Type I error

𝛼 (typically, 𝛼 = 0.05). If the index sets Ck were known, the

traditional exact F-test or approximate likelihood ratio (LR)

MANOVA test could be applied, Anderson [1]. These are

based on the total and within-cluster sums of squares

S1 =
n∑

i=1

‖xi − x‖2, SK = min
C1,… ,CK

K∑
k=1

∑
i∈Ck

‖xi − xk‖2,

(4)

respectively. When the index sets are unknown and estimated,

as in the K-means algorithm, the distribution of classical

statistics does not hold, so the classical MANOVA does not

apply.

To compute the p-value for the no-clusters hypothesis when

the index sets are unknown, we need to estimate the cumu-

lative distribution function (cdf) of statistics under the null

hypothesis: that is, when xi ∼ 𝒩 (𝝁, 𝜎2I), i= 1, 2, ..., n. We

could use either the F-statistic, (S1 − SK)/SK , or the likelihood

ratio test, log(S1/SK), but the p-value does not change upon

any strictly increasing transformation, so it suffices to find the

cdf of the ratio

r = S1

SK
. (5)

The advantage of the statistic (5) is that its distribution,

under the null hypothesis, does not depend on 𝝁 and 𝜎2.

Indeed, simple algebra proves that

r =
S1∕𝜎2

SK∕𝜎2
=

S1z

S𝐾𝑧

,

where

S1z =
n∑

i=1

‖zi − z‖2, S𝐾𝑧 = min
C1,… ,CK

K∑
k=1

∑
i∈Ck

‖zi − zk‖2,

and zi ∼ 𝒩 (0, I).
Finally, the method of computing the p-value for the

no-clusters null hypothesis versus the alternative that the

number of clusters is K is as follows: Let the K-means

algorithm for the data at hand {xi, i= 1, 2, ..., n} produce

r* as the ratio of 2 sums of squares (5). Carry out a fairly

large number of simulations N, say N = 1000, to obtain

the empirical cdf of r: For each simulation, (1) generate

{z1, z2, … , zn} ∼ 𝒩 (0, I), (2) run K-means, and (3) com-

pute the total sum of squares S1z, the within sum of squares

from the K-means, SKz, and r = S1z/SKz. It took about 2 s for

the data depicted in Figure 1 to do simulations in R on a reg-

ular desktop using 10 random initialization starts. Then, the

p-value is the proportion of simulations in which r > r*. If

there were clusters, then r* would be greater than the typical r
under the null hypothesis (no clusters). Typically, we say that

the null hypothesis is rejected if the proportion (p-value) is

< 0.05. The p-value for the configuration of points depicted

in Figure 1 is 0.438. This means that the no-clusters hypothe-

sis cannot be rejected. If the number of simulations N is fairly

large, the p-value is computed with precision of order 1/N.

The typical threshold for the p-value, 0.05, specifies Type

I error (the alpha error): the probability of concluding that

there are several clusters when in fact there are no clusters.

Type II error (the beta error) is the probability of concluding

that there are no clusters when in fact there are clusters. Usu-

ally, we compute the power function as complement to the

beta error, that is, the probability of rejecting clusters when in

fact there are clusters. Of course, the power function depends

on how separated the clusters are. For example, in the case

of 2 clusters, the power function depends on the Mahalanobis

distance, ||𝝁1 −𝝁2||/𝜎 = 𝛿. When 𝛿 = 0, the power function

turns into Type I error 𝛼; when 𝛿→∞, the power function

approaches 1. The power function tells how different the cen-

ters of the clusters, adjusted for 𝜎, must be to claim that there

are 2 clusters. An example of the power function for cluster

detection is shown in Figure 2 for different n and m= 2. More

points produce a higher probability of cluster detection. With

20 points, one needs to have the distance 𝛿 ≈ 3 to be able to

detect the cluster configuration with probability ∼80%.

2.2 How many clusters: the broken-line algorithm

“What is K?” is the paramount question of the K-means

algorithm, Hastie et al. [18]. There is a rich body of literature



4 DEMIDENKO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Relative distance between clusters, delta

P
ro

ba
bi

lit
y 

of
 c

lu
st

er
s 

de
te

ct
io

n
n = 20
n = 50
n = 100

FIGURE 2 Three power functions for detection of 2 clusters with the delta

on the x-axis (K = 2 and K = 2)

on the topic, and it is not the objective of the present work

to review available methods for choosing the number of clus-

ters in the K-means algorithm. Instead, we develop a new

broken-line algorithm and compare its performance via sim-

ulations against 27 other algorithms of K determination com-

puted by the R function NbClust based on the statistical

model (1); see the next section.

Our broken-line algorithm is an elaboration of the

well-known and loosely defined elbow method: (1) Plot the

log total within sum of squares, SK , against K for a sequence

of values K = 1, 2, … , Kmax, and (2) chose K at the elbow

of the curve, that is, where the line exhibits a change of

slope. Although this method is intuitively appealing, there is

no formal rule to define the elbow. We facilitate the deter-

mination of K by plotting lnSK and identifying K where

the rate of decrease of lnSK (the slope) changes. Precisely,

the broken-line algorithm is as follows: Fit 2 linear regres-

sions using 2 segments of the data, {S1, S2, .., SK} and

{SK+1, SK+2, .., SKmax
}, and compute the total residual sum of

squares for K = 2, 3, … , Kmax − 2. The optimal K is where

the sum of squares takes a minimum.

This algorithm is illustrated in Figure 3. In the left plot, 6

clusters are simulated according to model (1) using 𝜎 = 0.2

with about 150 points in each cluster. The circles depict the

95% confidence region with centers at the true mean and

radius 𝜎
√
𝜒−2(0.95, 2), where 𝜒−2 (0.95, 2) is the 0.95th

quantile of the chi-distribution with 2 degrees of freedom. In

the right plot, we run 24 kmeans algorithms, letting K = 1,

2, ..., 24 (=Kmax) and plot lnSK against K. Then we run

23× 2= 46 linear fits and find the pair that produces the min-

imum total residual sum of squares. The minimum occurs

at K = 6. Note that plotting SK against K, as usually recom-

mended, does not detect the change in slope—the log scale is

crucial.

Although no theoretical justification for using lnSK is

offered in this work yet, the link back to the log-likelihood

(2) can be easily traced. Indeed, the minimum twice-negative

log-likelihood is mn[lnSK − ln(mn)+ 1]. Since m and n are

K-independent, the optimal log-likelihood solely depends

on lnSK , which is the prime metric in the famous

Neyman-Pearson lemma for hypothesis testing, Lehmann and

Romano [24].

Example 1. Human tumor microarray data. Hastie et al.

[18], p. 512 provide an example of the K-means algorithm

with n= 64 human tumors to be classified in groups using

6830 gene microarray expression data. As stated in the book,

“...there is no clear indication” on the number of clusters; they

use K = 3. The identification of the number of clusters in this

example based on our broken-line algorithm is depicted in the

left plot of Figure 6 . Although visual identification of the

elbow is indeed difficult even on the log scale, the rate of the

drop changes at K = 5 (the gap statistic identified 2 clusters).

2.2.1 Comparison with other methods using simulations
We use the package NbClustin R to compare our

broken-line algorithm against 27 other methods previously

reported in the literature over the years, including a popular

gap statistic method by Tibshirani et al. [36]. We simulate

six clusters according to model (1) with 𝜎 = 0.2, 0.3, 0.4, and

0.5, with typical configurations shown in Figure 4; a typical

configuration for 𝜎 = 0.2 is depicted in Figure 3.

The best 6 methods of K determination are presented in

Table 1; we do not report the results of classification on the

other 21 methods, including gap statistic, because they are

worse in terms of the deviation of the identified number clus-

ters from K = 6. For each method, we compute the mean of

the identified K across simulations, K, to evaluate the bias; the

standing is determined by the absolute deviation of averages

from 6 across 𝜎 (the last column). It is understandable that,

when 𝜎 increases (clusters are getting wider), the methods

tend to find fewer clusters. The superiority of the broken-line

algorithm is obvious.

Example 2. Classification of ovarian cancer microarrays.

The identification of latent clusters of genes of ovarian cancer

is an important problem for improving treatment outcomes

[32]. Considerable effort has been devoted by The Can-

cer Genome Atlas (TCGA) Research Network researchers to

carry out microarray experiments to identify clusters of genes

that could better classify the disease with a possibility of gene

therapy [33]. However, the number of gene clusters is still an

open question. Several researchers hypothesize that the num-

ber of clusters of genes should be equal to the number of

clinically supported ovarian tumor subtypes: serous, muci-

nous, endometrioid, and clear cell [39]. Here we use the gene

expressions data of the n= 1500 most representative genes

from m= 489 ovary tumors [12]. Figure 5 depicts the prin-

cipal component analysis (PCA) of 1500 points from R489

points representing genes that are connected if the coefficient

of determination (squared Pearson correlation coefficient) is
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greater than 0.3. Four clusters can be recognized—connecting

the pairs of points by a segment improves the clusters’ visibil-

ity. The plot of lnSK against K is shown at right in Figure 6.

The regression lines for [1, 2, 3, 4] and [5, 6, ..., 15] yield

minimum residual sum of squares: the broken-line algorithm

confirms that the number of clusters of genes is 4.

3 K-MEDIANS CLUSTERING ALGORITHM

In reality, observations may contain outliers or even obser-

vations that do not belong to either cluster. In this section,

we suggest a statistical model for the K-medians clustering

algorithm. The K-medians is a well-known robust version of

hard clustering—we will derive this algorithm via the method

of ML using the multivariate Laplace distribution. Although

the application of Laplace distribution to mixture distribution

and fuzzy clustering is known [6,9,3,13,29,34,37], we are not

aware of derivation of the K-medians algorithm through the

method of ML, but most importantly by taking full advantage

of a statistical model-based approach by (1) applying classical

statistical tests to answer important questions about clusters,

(2) computing the confidence region for each cluster, and,

finally, (3) generating data and carrying out simulations to

study statistical properties of statistical tests and estimators.

Denote with (𝜇, 𝜃) the Laplace (or double-exponential)

distribution with the density f (x;𝜇, 𝜃)= (2𝜃)−1e−|x−𝜇|/𝜃 ,

where 𝜇 is referred to as the location parameter and 𝜃 is

referred to as the scale parameter. It is well known that, if

xi
iid∼(𝜇, 𝜃), then the ML estimator of 𝜇 is the median and

solves the minimization problem
∑n

i=1|xi − 𝜇| ⇒ min. This

fact is the impetus for our statistical model: It is assumed that

the components of the m-dimensional vector xi from cluster

k are independent and identically distributed with the loca-

tion parameter 𝝁k and the common scale parameter 𝜃 (vector

observations are independent as well). Symbolically

xi ∼ (𝝁k, 𝜃Im), i ∈ Ck.

The log-likelihood function, up to a constant term, takes the

form

l(𝝁1, … ,𝝁K , 𝜃,C1,C2, … ,Ck)

= −

(
𝑚𝑛 ln 𝜃 + 𝜃−1

K∑
k=1

∑
i∈Ck

|xi − 𝝁k|) .

Commonly, |xi −𝝁k | refers to the L1-norm or Manhattan

distance between the observation vector xi and the respective

center 𝝁k. Obviously, the maximum of l occurs when

min
C1,… ,CK

K∑
k=1

∑
i∈Ck

|xi − x̃k|,
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TABLE 1 Comparison of 6 methods of estimation of the number of clusters via simulations

𝝈 Mean

Rank Method Reference 0.2 0.3 0.4 0.5 ∣ K − 6 ∣

1 Broken-line Present work 6.0 5.1 5.6 6.0 0.32

2 CH Calinski and Harabasz [8] 6.1 6.1 3.0 3.0 1.55

3 Silhouettes Rousseeuw [28] 5.8 5.8 3.0 3.0 1.60

4 KL Krzanowski and Lai [23] 3.9 3.9 7.8 4.5 1.88

5 SDindex Halkidi et al. [16] 5.0 5.0 3.0 3.4 1.90

6 CCC Sarle [34] 6.1 6.1 2.0 2.0 2.05

FIGURE 5 PCA of n= 1500 ovarian tumor genes. Points are connected if

the coefficient of determination is >0.47. Four clusters can be

recognized—our broken-line algorithm identifies 4 clusters as well, see the

right plot in Figure 6

where x̃k is the m× 1 median vector in cluster k. This implies

that the method of ML with the Laplace distribution is equiv-

alent to the K-medians algorithm.

Now we illustrate how the no-clusters test can be general-

ized to the K-medians: As before, the test statistic is the ratio

(5), but now

S1 =
n∑

i=1

|xi − x̃|, SK = min
C1,… ,CK

K∑
k=1

∑
i∈Ck

|xi − x̃k|,
where x̃ is the overall median vector assuming no clusters.

It is easy to see that, similar to the Gaussian case, the ratio

r = S1/SK does not depend on either𝝁 or 𝜃. This means that we

can estimate the cdf of r from simulations using zi
iid∼(0, Im)

instead of xi. Then the p-value for testing the null hypothesis

that there are no clusters is the 𝛼th quantile of the empirical

cdf (typically we use 𝛼 = 0.05).

The broken-line algorithm for selection of K generalizes to

K-medians in a straightforward manner and is illustrated in

Figure 7, where observations from 3 clusters are generated

according to the Laplace distribution. We used the R function

cclust of the package flexclust to run the K-medians

algorithm.

The (1− 𝛼)th confidence region for each cluster is con-

structed using the fact that, if xi
iid∼(𝜇, 𝜃), then 2𝜃−1

∑n
i=1|xi−

𝜇|∼𝜒2(2n). In particular, for m= 2, as in Figure 7,

the confidence region for the kth cluster is the 45◦

rotated square (rhombus) and is defined by the equation

|x1 −𝜇1|+ |x1 −𝜇2|= 0.5𝜃𝜒−2(0.95, 4), where 𝜒−2(0.95, 4) is

the 0.95th quantile of the chi-distribution with 4 degrees

of freedom (the left plot). The right plot shows that the

broken-line algorithm correctly determines the number of

clusters.

4 SEMISUPERVISED K-MEANS
ALGORITHM

A common critique of cluster analysis is that it does not make

a connection between cluster and group. The labeling and

interpretation is up to the user because cluster analysis is an

unsupervised classification technique. Sometimes, one has an

additional set of observations from some clusters to put the

labels right. Several authors have suggested variants of the

K-means algorithm to account for observations with known

labels/groups. For example, Wagstaff et al. [41] and Basu

et al. [4] suggested improving the K-means algorithm starting

from seeding generated by the label-known (known member-

ship) observations or do clustering in the restricted sense, so

that all observations with known membership belong to the

same cluster. However, unlike previous authors, we suggest

the incorporation of a priori knowledge using a model-based

approach.

We use the following example to illustrate the K-means

when the cluster membership of some observations is known

(these observations will be referred to as supervised observa-

tions). That is why this version will be called the semisuper-

vised K-means algorithm. The following example clarifies the

concept.

Example 3. Political party classification. We want to use

reading proficiency and attitude toward gay marriage to iden-

tify whether the individual is a Democrat or a Republican.

Thirty people were tested for reading proficiency, and the

question was asked about their opinion on gay marriage. In
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algorithm correctly identifies K= 3

addition, each person reported his/her political party, Repub-

lican (circle) or Democrat (triangle); the measurements were

transformed into a scoring system where 0 means national

average; see Figure 8. The party membership information was

not used for classification but for computing the misclassi-

fication error. The standard K-means algorithm was applied

to classify the 30 people into 2 groups. Small circles and tri-

angles indicate the true party membership, and large circles

and triangles indicate the K-means classification accordingly

(an individual is misclassified if the symbols are different).

As follows from the left plot, one Republican was mistakenly

classified as a Democrat, but there are many more Democrats

misclassified as Republicans. Overall, 30% of individuals

were misclassified. In the right plot, the same points are used,

but, in addition, we have 5 individuals (supervised obser-

vations) with known party, marked as solid symbols. The

question is: How to incorporate the supervised observations

into the classification algorithm and what is the appropriate

statistical model?

Now we describe the statistical model for the hard classifi-

cation that incorporates observations with known clusters. As

in the regular K-means model, it is assumed that unsupervised

observations follow the assumption

xi ∼ 𝒩 (𝝁i, 𝜎
2), i = 1, 2, … , n,

where 𝝁i =𝝁k for i ∈ Ck, k= 1, 2, ..., K. In addition to these n
points, we have pk supervised observations for the kth cluster.

Note that pk ≥ 0, and in a special case when pk = 0 for all k= 1,

..., K, we come to the standard K-means model. The twice

negative log-likelihood function, up to a constant term, is

m(n + P) ln 𝜎2

+ 𝜎−2

( K∑
k=1

∑
i∈Ck

‖xi − 𝝁k‖2 +
K∑

k=1

pk∑
j=1

‖y𝑘𝑗 − 𝝁k‖2

)
.

Equating the derivative with respect to 𝜎2 to zero, we reduce

the ML estimation to the following minimization problem:

K∑
k=1

∑
i∈Ck

‖xi − 𝝁k‖2 +
K∑

k=1

pk∑
j=1

‖y𝑘𝑗 − 𝝁k‖2.
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FIGURE 8 K-means with and without a priori classification. The addition of five individuals with known party (solid symbols) improves the discrimination

If the index sets {Ck} are held fixed, differentiation with

respect to 𝝁k leads to the solution

𝝁̂k = 1

nk+pk

( ∑
i∈Ck

xi +
pk∑

j=1

y𝑘𝑗

)
= nk

nk+pk
xk +

pk

nk+pk
yk

= − pk

nk+pk
xk +

pk

nk+pk
yk + xk =

pk

nk+pk
(yk − xk) + xk.

We use this derivation to solve the ML hard classification

via the repeated K-means algorithm:

1. Apply the regular K-means to n unsupervised observations

{xi}.

2. Adjust

x∗i = xi −
pk

nk + pk
(xk − yk) (6)

and apply the K-means to n +
∑K

k=1 pk points {x*i} iterating

until convergence.

To understand the adjustments (6), find the center of the kth

cluster for observations {x*i}:

1

nk

∑
i∈Ck

x∗i = xk −
pk

nk + pk
(xk − yk) =

nk

nk + pk
xk +

pk

nk + pk
yk.

As follows from this algebra, the adjustments (6) can be

viewed as the weighted means using xk and yk with the

weights proportional to the number of unsupervised and

supervised observations in cluster k, respectively. Typically,

it takes 1 or 2 iterations to converge.

This algorithm was applied to the above example (see the

right plot of Figure 8), and it converged in 2 iterations. The

addition of supervised observations improved the discrimi-

nation: the total misclassification error dropped from 30% to

17%.

5 CLUSTERWISE REGRESSION

Most literature takes the soft clusterization, mixture distribu-

tion, approach to linear regression, for example, Yan et al.

[38]. An extension of the hard classification to the linear

regression model is also known and called clusterwise regres-

sion, Spath [31]. In this section, we suggest a statistical

model for clusterwise regression, reduce the ML estimation

to repeated K-means, demonstrate how the distribution of the

regression coefficients can be studied via simulations, and,

finally, generalize clusterwise regression to multiple depen-

dent variables.

5.1 Single dependent variable

If yi is the ith observation of the dependent variable and xi
is the respective m× 1 vector of independent (explanatory)

variables, it is assumed that, within each cluster, there is its

own vector of regression coefficients

yi ∼ 𝒩 (𝜷′
kxi, 𝜎

2), i ∈ Ck, k = 1, 2, … ,K,

under a standard assumption that observations {yi, i= 1, 2, ...,

n} are independent. As in the case of regular K-means, the

task is not only to estimate the Km regression coefficients but

also to identify to what cluster each observation i belongs: that

is, to find/estimate the partition of the set {1, 2, ..., n} into K
nonoverlapping index sets {Ck}. If index sets were known, the

residual sum of squares within cluster k could be expressed

using the generalized matrix inverse:

min
𝜷k

∑
i∈Ck

(yi − x′
i𝜷k)2 = y′

k(I − Xk%(X′
kXk)+X′

k)yk,

where yk is the nk × 1 vector of the dependent variable, and

Xk is the nk ×m matrix of independent variables composed

of vectors xi (nk is the number of observations in cluster k).

This formula covers the cases when nk <m or when matrix

Xk does not have full rank. Simple algebra shows that the ML

estimation reduces to the following optimization problem:

max
C1,… ,CK

K∑
k=1

y′
kXk(X′

kXk)+X′
kyk. (7)

This representation gives rise to another interpretation of

clusterwise regression. To simplify, let us assume that matrix

Xk has full rank. Noting that 𝜎2(X′
kXk) = covk is the covari-

ance matrix of 𝜷k, rewrite

y′
kXk(X′

kXk)−1X′
kyk = 𝜷

′
k(X′

kXk)𝜷k = 𝜎2𝜷
′
kcov−1

k 𝜷k.
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Thus (7) can be interpreted as the maximization of the total

significance test statistic in the Wald test.

The K-means regression analysis can be extended to the

case when clusters share regression coefficients (supplied

with the subscript 0):

yi ∼ 𝒩 (𝜷′
0x0i + 𝜷′

kxi, 𝜎
2), i ∈ Ck. (8)

For example, the clusters may have the same slopes but

different intercepts (see an example below).

To estimate the clusterwise regression with shared coef-

ficients (8), the following repeated K-means algorithm is

proposed: (0) apply the least squares to the entire dataset and

compute residuals ri; (1) apply the K-means to residuals {ri}

to classify them into K clusters (classification on the real line);

(2) estimate 𝜷0 and 𝜷k in each cluster separately using the

dummy-variable approach and compute new residuals, and

return to step (1). Iterate until convergence. The following

example illustrates the repeated K-means algorithm for the

clusterwise regression.

Example 4. Two group regressions with common slope. Con-

sider a simple linear regression yi = 𝛽0 + 𝛽1xi + 𝜀i, where

i= 1, 2, ..., n denotes the subject id. The data is suspected

to combine 2 groups with different baselines—the intercepts

are group-specific, but the slope coefficient 𝛽1 is the same

(the groups are unknown and subject to estimation). Specif-

ically, we want to know what group the subject depicted

with “?” belongs to (the left bottom corner); see Figure 9.

The statistical model is yi = 𝛽01 + 𝛽1xi + 𝜀i if i ∈ C1, and

yi = 𝛽02 + 𝛽1xi + 𝜀i if i ∈ C2, where C1 ∩C2 =∅ and C1 ∪
C2 = {1, 2, ..., n}. We start by fitting the data at left with the

least squares regression, treating the data as 1 sample. Then

we compute the residuals and apply the K-means algorithm to

separate the residuals into 2 groups and obtain the first index

set approximation, C1 and C2. Next, we introduce 2 dummy

variables, d1i = 1 if i ∈ C1 and 0 otherwise, and d2i = 1 if i
∈ C2 and 0 otherwise (d1 and d2 are orthogonal). In the next

step, we run the linear model yi = 𝛿1d1i + 𝛿2d2i + 𝛽1xi + 𝜀i and

obtain the residuals; we apply the K-means again to obtain

the next index set, C1 and C2, and iterate in this fashion while

the total residual sum of squares decreases. It took 2 iterations

for the data in Figure 9 to converge. The plot at right depicts

the results of the clusterwise regression. To indicate the clas-

sification, we use different symbols; the regression lines are

parallel because the groups have common slope. The question

mark subject belongs to Group 1.

5.2 Multidimensional dependent variable

Here we generalize the above example to the case when the

dependent variable y is m-dimensional [40]. Let Xi denote

the known m× p matrix of explanatory variables, i= 1, 2, ...,

n. As before, we assume that vectors from different clusters

have different means (intercepts) but the same slopes. Then

the statistical model takes the form

yi ∼ 𝒩 (𝝁k + Xi𝝂, 𝜎
2Im), i ∈ Ck, (9)

where 𝝁k is the m× 1 vector of cluster-specific intercepts, and

𝝂 is the p× 1 vector of common slope coefficients. Matrix

Xi should not contain a column of 1’s (no intercept) because

the model will be not identifiable otherwise—the intercepts

are captured by 𝝁k. It is easy to see that maximization of the

log-likelihood function turns into the minimization of

min
𝝂,𝝁k ,Ck

K∑
k=1

∑
i∈Ck

‖yi − 𝝁k − Xi𝝂‖2. (10)

The following repeated K-means algorithm is proposed for

minimization of this criterion: (0) Estimate the intercepts and

slopes treating the data as 1 cluster by stacking {yi} into

the nm × 1 vector y and {Xi} into the nm × p matrix X.

To represent the vector of cluster-specific intercepts, 𝝁, let

Z= 1n ⊗ Im (stack n is the m×m identity matrices,⊗ denotes

the matrix Kronecker product), and estimate the linear model

y=U𝜼+ 𝜺 by least squares, where U= [Z, X] is the nm ×
(m+ p) combined matrix and 𝜼= (𝝁’, 𝝂’)

′
is the combined

vector of intercepts and slopes; compute the m× 1 residual

vectors {ri, i= 1, ..., n}. (1) Apply the K -means algorithm to

{ri} to get index sets {C1, ..., CK}. (2) Build an (nm)× (Km)

matrix Z=E⊗ Im, where E is the n × K matrix such that

Eik = 1 if i ∈ Ck and Eik = 0 otherwise; estimate the linear

model y=U𝜼+ 𝜺, compute the residual vectors ri, and return

to step (1). Iterate until criterion (10) stops decreasing.

Example 5. Statistical simulations for clusterwise regres-
sion. An advantage of a statistical model for classifica-

tion is that one can generate data and study the statisti-

cal properties of clustering through simulations. Consider

the following regression problem with a three-dimensional

dependent variable (m= 3) and 2 slope coefficients (p= 2).

Two groups of observations (K = 2)—146 observations from

the first group (mean vector 𝝁1) and 54 from the second

(mean vector 𝝁2)—have to be identified along with estima-

tion of the 2 slope coefficients (n= 200). Let 𝜎 = 0.75, with

the Mahalanobis distance between group-specific intercepts

D= ||𝝁1 −𝝁2||/𝜎 = 1.6. How well can the observations be

classified into 2 groups, and what is the statistical distribution

of the slope coefficients? In particular, we want to under-

stand the impact of grouping on the distribution of the slope

coefficients. The results of 10 000 simulations with the data

generated according to model (9) are presented in Figure 10.

For each simulated dataset, the repeated K-means algorithm

was applied (typically it took about 4-5 iterations to con-

verge), and the index sets Ck and slope coefficients were

estimated. The slope coefficients were also estimated under

the assumption that there were no clusters using the standard

linear model for a benchmark comparison. The left plot in

Figure 10 shows the results of clustering in 10 000 experi-

ments; the fact that the first 146 observations belong to cluster

1 and the remaining 54 observations belong to cluster 2 (the
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slope but different intercepts)

ground truth) is shown with the horizontal black lines. The

average cluster assignment for each i is depicted with a circle.

Approximately 34% of observations were wrongly assigned

to another cluster (interestingly, each i has almost the same

misclassification error). The distribution of 10 000 slope coef-

ficients is shown in the plots at right. The solid line depicts

the Gaussian kernel density estimate from the clusterwise

regression, and the dotted line depicts the density of the coef-

ficients when the presence of clusters is ignored; the vertical

line indicates the true value of the coefficient. In both cases,

the no-cluster distribution (1 group/mean) is tighter with an

underestimated standard deviation. The estimates of the sec-

ond slope are positively biased in both methods; however, the

two-group model has a smaller bias.

6 CLUSTERING OF MULTILEVEL DATA

Traditional cluster algorithms work under the assumption of

data homogeneity. Sometimes, the data to classify have a mul-

tilevel structure; for example, we may want to classify subjects

for whom repeated measurements (replicates) are available.

Such data will be referred to as multilevel data. The following

example illustrates the concept.

Example 6. Atomic force microscopy (AFM) for cervical
cancer detection. Several studies report that AFM imaging

can discriminate normal and cancer cervical cells using phys-

ical characteristics of the cell surface [14,15]. Figure 11

depicts a typical distribution of 2 cell AFM image charac-

teristics, namely fractal dimension and cell surface area. The

original data (the left plot) represents cell samples from a

pap smear exam from n= 25 women; each exam sample con-

tained 2 to 10 cells (black filled circles); the red circle is

the average across replicates (red filled circle). We use seg-

ments to connect replicates to averages for a better hierarchy

visualization; overall there are 138 pairs of observations.

The ground truth is known: there are 3 types of samples:

(1) normal cells (10 women), (2) squamous cell carcinoma

(7 women), and (3) adenocarcinoma (8 women). Can the K
-means algorithm identify the type of the woman’s cervix

cells in an unsupervised fashion? Two approaches are obvi-

ous: (1) use cells as the measurement unit and apply the

K-means to all n= 138 two-dimensional vectors, or (2) apply

the K-means to averages over replicates (red circles), n= 25.

The first approach may lead to confusion because replicates

from 1 woman may be assigned to different clusters. The sec-

ond approach treats the averages equal, but in fact one has

to take into account the number of averaged replicates. The

following statistical model takes into account the hierarchy

of the data by recognizing the difference between the varia-

tion of image characteristics within each woman and between

women (women heterogeneity).

The statistical model for classification with replicates takes

the form of the variance components model [35,21], but the

groups are not known. As before, x indicates the vector of

observations, but now it has 2 indices: The first index i indi-

cates the observation to be classified (the woman in the AFM

example), and the second index j indicates a replicate (there

are pi replicates for woman i). The statistical model can be

viewed as a simple mixed model [11]

x𝑖𝑗 = 𝝁k + bi + 𝜀𝑖𝑗 , j = 1, 2, … , pi, i ∈ Ck, (11)

where

bi ∼ 𝒩 (0, 𝜎2𝜏2Im), 𝜀𝑖𝑗 ∼ 𝒩 (0, 𝜎2Im)

are random effects representing intra-individual variation.

Note that in the traditional mixed model, the clusters speci-

fied by the index sets are known; here we want to estimate

them along with the means and variance parameters. In the

AFM example, parameter 𝜏2 reflects the heterogeneity among

women, and it is expected that 𝜏2 > 1, reflecting a com-

monly observed biological phenomenon: namely the variation
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between women is larger than the variation within woman.

The total variance of xij is 𝜎2 + 𝜎2𝜏2 = 𝜎2(1+ 𝜏2), the sum

of the variation across replicates of the same woman (𝜎2)

and the variation between women (𝜎2𝜏2). This model implies

that replicates corresponding to the same i correlate with the

correlation coefficient 𝜌= 𝜏2/(1+ 𝜏2). The following theorem

lists the facts about the ML classification of the multilevel

data specified by model (11).

Theorem 1. (a) If the number of replicates is the same (pi
= p), the maximum likelihood hard classification is achieved

by the K-means algorithm applied to the averages, x̃i =
p−1

∑p
j=1

x𝑖𝑗 . (b) If the number of replicates is different, the

maximum likelihood is equivalent to minimizing

N ln

(
S0 +

K∑
k=1

∑
i∈Ck

pi

1 + pi𝜏2
‖ x̃i − 𝝁k‖2

)
+m

n∑
i=1

ln(1+pi𝜏
2),

(12)

over 𝜏, 𝝁k, and {Ck, k = 1, ..., K}, where N =
∑n

i=1 pi and

S0 =
n∑

i=1

pi∑
j=1

‖x𝑖𝑗 − x̃i‖2.

(c) Minimization of (12) can be accomplished by alternat-

ing between the weighted K-means algorithm using {x̃i} with

weights wi = pi/(1 + pi𝜏
2) when 𝜏2 is held fixed, and the

fix-point algorithm for 𝜏 when 𝝁k and {Ck} are held fixed:

𝜏2
t+1

=𝜏2
t

N
m

∑n
i=1

hipi

(1+pi𝜏
2)2(∑n

i=1

pi

1+pi𝜏
2

)(
S0+

∑n
i=1

hi

1+pi𝜏
2

) , t = 0, 1, … ,

(13)

where hi = pi‖ x̃i − 𝝁k‖2, starting from

𝜏2
0
=

N
n∑

i=1

hi∕pi

S0𝑚𝑛
. (14)
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(d) When 𝜏2 = 0, minimization of (12) turns into the

weighted K-means algorithm for {x̃i} with weights wi = pi.

See the Appendix for the proof.

The fact that the ML estimation with an equal number of

replicates reduces to the K-means is understandable because

then averages have the same variance and therefore can be

treated equally. It is easy to prove that fix-point iterations

produce a positive solution if

n∑
i=1

hipi > m

(
S0 +

n∑
i=1

hi

)
(15)

and otherwise 𝜏2 = 0. Indeed, consider the right-hand side of

expression (13) as a function of 𝜏2. This function approaches

(14) when 𝜏2 → ∞ . The solution is positive if the derivative

of this function, evaluated at 𝜏2 = 0, is greater than 1—it is

easy to see that this holds under the inequality (15).

Example 7. AFM cell imaging (continued). We apply the

ML for hard classification to AFM cervical cell images using

2 the characteristics shown in the left plot of Figure 11.

The R function cclust of package flexclust is used to

run the weighted K-means algorithm when 𝜏2 is held fixed.

The results of classification are shown in the right plot of

Figure 11. Only 1 woman, indicated with a large red circle, is

misclassified. She belongs to Cluster 1 (adenocarcinoma), but

the ML hard classification put her into Cluster 2 (squamous

cell carcinoma).

7 CONCLUSIONS

Typical cluster analysis stops after classification is complete.

For the next-generation K-means algorithm, the work is about

to start: What is the confidence interval for the mean vector,

and how well are the index sets Ck estimated? How to test

that clusters exist? What is the number of clusters and what

is their distribution of its estimate? What are statistical prop-

erties of clusterwise regression coefficients? These questions

cannot be answered based on the standard algorithm-driven

paradigm. The only way to study the properties of the clas-

sification is to use a model-based K-means algorithm. This

model was proposed by Banfield and Raftery more than

20 years ago, but little has been done since.

We have developed new directions and extensions to the

statistical model-based K-means algorithm which turns into

the ML estimation. But it is too early to claim victory: The

hard classification problem does not fall into the track of

the well-established statistical theory because the number

of parameters grows with n and the index sets are discrete.

Special statistical methods, married with combinatorics, are

required, and simulations here will be very helpful.

The hard classification problem, and particularly find-

ing the optimal partition set, may have several local solu-

tions. Development of the global minimum criteria, fol-

lowing the route of continuous optimization [10], is a

matter of future work. We strongly recommend the use

of at least 10 starting points in the K-means algorithm

to ensure that the global minimum has been achieved

(kmeans[...,nstart= 10,...] in R).

Obviously, 1 paper cannot solve multiple problems emerg-

ing in connection with extension of the K-means algorithm.

However, we hope that our work will stimulate interest in fur-

ther development of hard classification algorithms and deeper

understanding of their statistical properties.
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APPENDIX

APPENDIX: PROOF OF THEOREM

(a) Stack the replicates of the ith observation vector from

cluster k to form a (mp)× 1 vector Xi = (x′
i1, … , x′

𝑖𝑝)
′. Its

distribution is multivariate normal, Xi ∼ 𝒩 (1p ⊗ 𝝁k, 𝜎
2N),

where 1p is the p× 1 vector of 1’s and

N = I𝑚𝑝 + 𝜏21p1′
p ⊗ Im

is the (mp)× (mp) symmetric matrix. Using formulas of

matrix algebra, one can show that the determinant and the

matrix inverse can be derived in closed forms as follows:

|N| = (1 + p𝜏2)m, N−1 = I𝑚𝑝 −
𝜏2

1 + p𝜏2
1p1′

p ⊗ Im.

Therefore, the twice-negative log-likelihood function for

the ith observation from cluster k, up to a constant term, can

be written as

li(𝝁K , 𝜎
2, 𝜏2) = 𝑚𝑝 ln 𝜎2 + m ln(1 + p𝜏2)

+ 1

𝜎2
(Xi − 1p ⊗ 𝝁k)′

(
I𝑚𝑝 −

𝜏2

1 + p𝜏2
1p1′

p ⊗ Im

)
(Xi − 1p ⊗ 𝝁k).

After some matrix algebra, we obtain

(Xi − 1p ⊗ 𝝁k)′
(

I𝑚𝑝 −
𝜏2

1 + p𝜏2
1p1′

p ⊗ Im

)
(Xi − 1p ⊗ 𝝁k)

= Si −
𝜏2

1 + p𝜏2
Mi,

where

Si =
p∑

j=1

‖x𝑖𝑗 − 𝝁k‖2, Mi =
‖‖‖‖‖‖

p∑
j=1

(x𝑖𝑗 − 𝝁k)
‖‖‖‖‖‖

2

to shorten the notation. After these simplifications, the

twice-negative log-likelihood function to be minimized takes

the form

𝑛𝑚𝑝 ln 𝜎2 + 𝑛𝑚 ln(1 + p𝜏2) + 1

𝜎2

K∑
k=1

∑
i∈Ck

(
Si −

𝜏2

1 + p𝜏2
Mi

)
.

(A1)

The minimum of this function over 𝜎2 is attained at

𝜎2 = 1

𝑛𝑚𝑝

K∑
k=1

∑
i∈Ck

(
Si −

𝜏2

1 + p𝜏2
Mi

)
.

Plugging this back into expression (A1) leads to the mini-

mization of

p ln

K∑
k=1

∑
i∈Ck

(
Si −

𝜏2

1 + p𝜏2
Mi

)
+ ln(1 + p𝜏2). (A2)

https://doi.org/10.2307/2531893
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Differentiating this function with respect to 𝜏2 and setting

it to zero leads to the minimum, again up to a constant:

(p − 1) ln

K∑
k=1

∑
i∈Ck

⎛⎜⎜⎝
p∑

j=1

‖x𝑖𝑗 − 𝝁k‖2 − p−1

‖‖‖‖‖‖
p∑

j=1

(x𝑖𝑗 − 𝝁k)
‖‖‖‖‖‖

2⎞⎟⎟⎠
+ ln

K∑
k=1

∑
i∈Ck

‖‖‖‖‖‖
p∑

j=1

(x𝑖𝑗 − 𝝁k)
‖‖‖‖‖‖

2

. (A3)

But

p∑
j=1

‖x𝑖𝑗 − 𝝁k‖2 − p−1

‖‖‖‖‖‖
p∑

j=1

(x𝑖𝑗 − 𝝁k)
‖‖‖‖‖‖

2

=
p∑

j=1

‖x𝑖𝑗 − x̃i‖2,

where x̃i = p−1
p∑

j=1

x𝑖𝑗 , the average of the replicates. The first

term in (A3)

(p − 1) ln

K∑
k=1

∑
i∈Ck

p∑
j=1

‖x𝑖𝑗 − x̃i‖2,

does not depend on {Ck}. The minimum of the second term

over 𝝁k is attained at

xk =
1

𝑝𝑛k

∑
i∈Ck

p∑
j=1

x𝑖𝑗 =
1

nk

∑
i∈Ck

x̃i, (A4)

where nk is the number of elements in the kth cluster. Since
p∑

j=1

(x𝑖𝑗 − xk) = p(x̃i − xk), the minimization of (A3) is

equivalent to the minimization of

K∑
k=1

∑
i∈Ck

‖ x̃i − xk‖2

as a result of the second equality in (A4). Finally, we conclude

that the ML hard classification is achieved by the K-means

algorithm applied to x̃i.

(b) We proceed as in the previous case, but now vector

and matrix dimensions may vary with i. For example, Xi ∼
𝒩 (1pi ⊗ 𝝁k, 𝜎

2Ni) and Ni = I𝑚𝑝i + 𝜏21pi 1′
pi
⊗ Im. Using the

previous formulas for the determinant and inverse, we arrive

at the analog of (A1):

𝑚𝑁 ln 𝜎2+m
n∑

i=1

ln(1+pi𝜏
2)+ 1

𝜎2

K∑
k=1

∑
i∈Ck

(
Si −

𝜏2

1 + pi𝜏2
Mi

)
,

(A5)

where N =
n∑

i=1

pi is the total number of vectors to classify and

Si =
pi∑

j=1

‖x𝑖𝑗 − 𝝁k‖2, Mi = p2
i ‖ x̃i − 𝝁k‖2.

Again, by eliminating 𝜎2, the minimization of (A5) turns

into the minimization of

N ln

K∑
k=1

∑
i∈Ck

(
Si −

𝜏2

1 + pi𝜏2
Mi

)
+ m

n∑
i=1

ln(1 + pi𝜏
2). (A6)

Express Si through x̃i using the elementary identity||a+b||2 = ||a||2 + 2a′b+ ||b||2 to obtain

Si =
pi∑

j=1

‖(x𝑖𝑗 − x̃i) + (x̃i − 𝝁k)‖2

=
pi∑

j=1

‖(x𝑖𝑗 − x̃i‖2 +2

pi∑
j=1

(x𝑖𝑗 − x̃i)′(x̃i −𝝁k)+
pi∑

j=1

‖x̃i −𝝁k‖2

=
pi∑

j=1

‖(x𝑖𝑗 − x̃i‖2 + pi‖x̃i − 𝝁k‖2

since
∑pi

j=1
(x𝑖𝑗 − xi) = 0. Further, after simplifying

Si −
𝜏2

1 + pi𝜏2
Mi = S0 +

pi

1 + pi𝜏2
‖x̃i − 𝝁k‖2,

the minimization of function (A6) turns into the minimiza-

tion of

N ln

(
S0 +

K∑
k=1

∑
i∈Ck

pi

1 + pi𝜏2
‖x̃i − 𝝁k‖2

)
+m

n∑
i=1

ln(1+pi𝜏
2),

where

S0 =
n∑

i=1

pi∑
j=1

‖(x𝑖𝑗 − x̃i‖2.

This means that the ML estimation is equivalent to the

minimization of (12).

(c) When 𝝁k and {Ck} are obtained from the weighted

K-means algorithm and held fixed, the maximum of (12)

occurs when the derivative with respect to 𝜏2 is zero or,

equivalently, when the following equation holds:

n∑
i=1

hipi

(1 + pi𝜏2)2
= m

N

( n∑
i=1

pi

1 + pi𝜏2

)(
S0 +

n∑
i=1

hi

1 + pi𝜏2

)
,

where hi = pi‖x̃i − 𝝁k‖2. Rewrite the above equation as

n∑
i=1

hipi𝜏
4

(1 + pi𝜏2)2
= 𝜏2 m

N

( n∑
i=1

𝜏2pi

1 + pi𝜏2

)(
S0 +

n∑
i=1

hi

1 + pi𝜏2

)
and equivalently

𝜏2 = N
m

n∑
i=1

hipi𝜏
4

(1+pi𝜏
2)2( n∑

i=1

𝜏2pi

1+pi𝜏
2

)(
S0 +

n∑
i=1

hi

1+pi𝜏
2

) ,

which gives rise to the fix-point iterations (13) starting from

𝜏2
0
=

N
n∑

i=1

hi∕pi

S0𝑚𝑛
.

The alternation between the weighted K-means algorithm

and the fixed-point iterations for 𝜏2 are continued until (12)

does not decrease by a small 𝜀.

(d) When 𝜏2 = 0, as follows from (12), the ML turns into

the minimization of

K∑
k=1

∑
i∈Ck

pi‖x̃i − 𝝁k‖2,

which is the weighted K-means algorithm.


