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Statistical Image Analysis

12.1 Introduction

We are witnessing a tremendous development in digital imaging. Ten years ago,

one needed special equipment to take digital images and quantify them–today it

is a routine task. Image processing is a well-established discipline with a number of

textbooks on the subject: Starck et al. (1998), Petrou and Bosdogianni (1999), Seul

et al. (2000), Gonzales and Woods (2002), and Petrou and Petrou (2010). Image

processing is concerned with picture enhancement, restoration, and segmentation

and is a part of signal processing. However, we are concerned with image analysis,

particularly statistical analysis of a sample of images (we prefer the word ensemble).

We refer the reader to a book by Barrett and Myers (2004) for a complete in-depth

discussion of image science and image reconstruction.

Our primary assumption is that images are random. For example, if one is inter-

ested in the quality of paint finishing, one can assume that images of different parts

of the painted object will differ up to a certain degree. One wants to know if the

image variation is within established limits. Since images are random, the statistical

approach becomes relevant. Typical questions of statistical analysis of images are:

(a) are two images the same up to a random deviation, or in statistical language, do

two images belong to the same general population? (b) are two ensembles of images

the same, like a series of images taken before and after treatment? (c) can we gen-

eralize a -test for images? and (d) can we compute a -value for image comparison

as we routinely do in statistics for sample comparison? Pattern recognition, as a

part of signal processing, also deals with image comparison but in terms of image

classification. Although the problems of statistical image comparison and classifica-

tion are close, they are not the same and, in particular, the latter does not address

image-specific variation.
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We have to admit that today, statistical image analysis and comparison are unsat-

isfactory. Perhaps the most advanced image statistics application is functional MRI

(fMRI), where time series image frames are analyzed to detect the signal around

the brain activation area. But image analysis should go far beyond fMRI because

image appeal becomes commonplace in scientific research. For example, a routine

practice in cancer research showing two microscopic tissue images before and after

treatment as proof of a method’s validity is unacceptable. Images vary considerably

across sections and animals (or humans). Proper analysis would involve the com-

parison of dozens or hundreds of images; in our terminology, an ensemble of images.

This is where the human eye cannot judge and statistics come into play.

The idea of distinguishing two types of image variation, within image and between

images, leads immediately to the mixed model as the workhorse of statistical image

analysis. Thus, the theory developed in previous chapters becomes the key to the

statistical analysis of digital images. For example, images of the same tissue taken at

different locations or different time points can be viewed as repeated measurements

and therefore may be analyzed by the relevant statistical methodology.

It is routine to use least squares as a criterion in image processing: for example,

for image registration. Why least squares? Why not weighted least squares? Why

sum of squares? We suggest an elaborative statistical model for images that implies

a justified criterion enabling statistical image analysis and comparison.

The goal of this chapter is to lay out the foundation for statistical analysis of

images using mixed effects modeling techniques for repeated measurements as de-

scribed in Chapters 2 through 8. Depending on the level of complexity and so-

phistication, statistical image models can lead to either linear mixed effects, or the

generalized linear or nonlinear mixed effects models. In no way can our description

be considered as complete; it serves only as a start for future, more sophisticated

statistical image modeling.

12.1.1 What is a digital image?

Mathematically, a digital image is a matrix. Consequently, matrix algebra is the

major mathematical tool in image analysis. There are two kinds of image, grayscale

and color. A grayscale (monochrome) image is a matrix with intensity represented

as integer values from 0 (black) to 255 (white). A grayscale image has 256 levels (0

to 255) because the human eye can distinguish approximately this many levels, and

because that number fits conveniently in one byte (a byte has 8 bits, 28 = 256). A

binary image is a special case of the grayscale format; it has intensity values of only

0 and 255, or pure black and pure white.

Each matrix element corresponds to a pixel on the image. If an image is repre-

sented as a  ×  matrix  , the value at each point on the image is rescaled as

255( −min)(max −min) and rounded. In digital imaging,  and  may

be hundreds or even thousands, leading to very large files. For example, a file of a

121× 74 gray image will be 121× 74 = 8954 bytes, although the actual size of the
image file depends on the format used. See Section 12.5 for a discussion of image

compression.

Because the three primary colors (Red, Green and Blue) can be combined to

produce other colors, a color image can be represented by three gray images–the
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RGB format. Thus, a color image can be represented numerically by a triple of ×
matrices with integer values from 0 to 255 as color saturation values. Although to

the human eye, color and three gray images do not seem to be equivalent, they

are mathematically. We take this approach in this book when dealing with color

images. Thus, instead of displaying a color image, we display three gray images.

The original color images may be viewed on the Internet.

Many formats are used to store images. Popular image formats include jpg, gif,

and tiff. Gray images may be converted to a text file using the Portable Graymap

(pgm) format, and color images may be converted to a text file using the Portable

Pixelmap (ppm) format. Although the resulting text file will be much larger, the

format gives the researcher full access to the image data for further processing.

There are many photo-editing, image-processing, and file-conversion products; we

use PaintShop Pro from Jasc Software, Inc.

In image analysis we often treat matrix elements as a function of the indices,

so in this chapter we use the notation ( ) to refer to the ( )th element. For

example, we work with  and  as arguments for image alignment. Moreover, we

shall deal with random  and .

12.1.2 Image arithmetic

Like matrices, images can be added, subtracted, and even multiplied and divided.

However, there is a substantial limitation to image arithmetic because images are

generally not aligned. For example, if one is interested in finding the image difference

between before and after, it is tempting to take image difference by subtracting pixel

intensities. However, it will soon be realized that pixels on the first image do not

exactly correspond to pixels on the second image; therefore, a simple difference does

not make sense. Even after image alignment, it may be realized that the objects in

the images moved slightly, and again, image difference becomes problematic. Image

alignment and registration is an essential problem of further image analysis.

12.1.3 Ensemble and repeated measurements

In statistical image analysis, we usually deal with a sample of images. This is new

to image processing, where one deals with one image at a time. A typical problem of

statistical image analysis is that one wants to know if two sets of images, {M1  =

1  1} and {M2  = 1  2} belong to the same general population. In this
book we use the term ensemble to indicate sample images. Typically, ensemble

means that the images are independent and identically distributed (iid) up to a

transformation. Thus, the notion iid for images has a broader sense and just means

that images are of the same object and independent. Statistical analysis of images

is often complicated by the fact that images may have different resolution, size,

viewpoint, position, lighting, and so on. We suggest modeling an ensemble of images

using repeated measurements or mixed effects methodology. This methodology was

applied to a random sample of shapes in Chapter 11 and is well suited to model

within- and between-image variation.
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12.1.4 Image and spatial statistics

Statistical image analysis and spatial statistics have much in common. Both work

with a planar distribution, and therefore an issue of spatial correlation (local depen-

dence of pixels) is central. Classic reference books for spatial statistics are those of

Ripley (1981) and Cressie (1991). Statistical analysis of images is more complicated

because it usually deals with an ensemble; in addition, images may be available

up to a planar transformation. Image analysis borrows the modeling techniques of

spatial correlation from spatial statistics, such as SAR and AR models. To model

more general image spatial correlation, the theory of a Markov random field is used

(Chellappa and Jain, 1993).

12.1.5 Structured and unstructured images

Images may be divided roughly into two groups: structured and unstructured. Ex-

amples of the first group are images of an easily recognized object, such as a human

face, building, carrot, rug, and so on. Examples of unstructured images are micro-

scopic images, pieces of painted wall, and aerial images. The human eye is good

at differentiating an apple from a TV set, but bad when it comes to comparing

hundreds of unstructured images, such as medical histology images. An unstruc-

tured image may be well represented by its gray level distribution, and therefore

it is image-content independent. An advantage of this approach is that a difficult

problem of image alignment is eliminated. On the other hand, it may well happen

that images of an apple an a TV set will produce the same gray distribution. Thus,

a gray-distribution model assumes that images are of the same type of object.

A structured or content-dependent statistical image analysis is more complex be-

cause, in addition to image alignment, it requires specification of the image content

and spatial correlation. For example, if cells in a microscopic image are elliptical

in shape and one wants to count cells, one has to define the cell shape. The sim-

plest structured image is texture where the pattern repeats in a stochastic manner.

Examples of textures are wood and fabric (Cross and Jain, 1983).

Structured images are complex, and unlike unstructured images, a multinomial

distribution for gray levels may serve as a uniform probabilistic model. Structured

images thus require different statistical techniques.

12.2 Testing for uniform lighting

Digital pictures may be taken at different exposures and lighting. In this section we

use the  -test of Section 3.8 to test whether the lighting is uniform . Moreover, we

estimate the direction and position of the light.

A 662×621 gray image of a rug is shown in Figure 12.1. The following statistical
model is assumed:

( ) = 0 + 1+ 2 + ( ) (12.1)

where  = 1   = 662  = 1   = 621 are pixel coordinates, and ( ) is

an error term with zero mean and constant variance. In other words, the grayscale

level ( ) is considered to be a linear function of the pixel coordinates,  and 
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FIGURE 12.1. Rug image and the light direction derived from the linear regression model

(the light comes from the bottom-right corner).

The relation may be viewed as a planar regression where 0 is the intercept, the

light intensity at the lower left corner; 1 is the slope coefficient, the rate at which

the light intensity increases or drops vertically; and 2 is the rate at which the light

changes horizontally. If the lighting is uniform, 1 = 0 and 2 = 0; thus, we can

find if the light is uniform by testing the significance of these regression coefficients.

In matrix form, (12.1), can be rewritten as

M =011
0
 + 1d1

0
 + 21d

0
 +E

where d = (1 2   )
0 d = (1 2  )0 and 1 is the vector of 1s of the respec-

tive dimension. Taking the vec operator of both sides, we rewrite (12.1) as a planar

relation in vector form suitable for regression analysis,

m =01 + 1(d ⊗ 1) + 2(1 ⊗ d) + ε

where ⊗ indicates the matrix Kronecker product and m =vec(M) is the  × 1
vector. Applying least squares, we find that c = 1344 − 00693 + 00383 As
follows from this regression, the average grayscale level is minimum (c = 88) when

 =  and  = 1 corresponding to the upper-left corner of the image (darker). In

the lower-right corner the image is lighter (c = 158) because maximum c occurs

at  = 1 and  = . To test whether the image has uniform lighting we test the

null hypothesis: 0 : 1 = 2 = 0 using the  -test (3.57). Since the errors are

assumed to be iid, we have V = I The residual sum of squares under the null is

0 =
P

(( )−)2 = 983× 108 and the minimal residual sum of squares

from regression is  = 892 × 108 For this example, the number of estimated
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FIGURE 12.2. Source light location with contours via the nonlinear regression model. The

linear and nonlinear models yield a close light angle. The location of the light source is

estimated at (1770, -465).

parameters is  = 3 the total number of observations is  =  × = 662× 621
and  = 2 Formula (3.57) gives  = 23274 but the threshold value assuming that

the light is uniform is about 3. Thus, the hypothesis that the light is uniformly

distributed is rejected overwhelmingly.

12.2.1 Estimating light direction and position

Moreover, having coefficients 1 and 2 we may estimate where the light comes

from. As noted above, since the first slope coefficient is negative and the second

is positive, the light comes from the lower-right corner. Since the tangent of the

angle is 0069300383 we estimate that the light comes at the angle 150◦ from the

-axis (indicated by the arrow).The linear model (12.1) assumes that the source

light is linear because the levels of the light field are straight lines. Alternatively,

one can assume that there is one source of light, say at position ( ) The levels

of the light field are concentric circles. We want to estimate  and  having the

rug image in Figure 12.1. As follows from the basic laws of optics, when the light

absorption is low, the light intensity is the reciprocal of the distance. To simplify,

we take the nonlinear regression model ( ) = 255− 
p
( − )2 + (− )2+ 

where  is the absorption coefficient and  is the error term. Estimating parameters

of this model by nonlinear least squares gives b = 075 b = 1770 and b = −465
This means that the estimated location of the light is (1770−465) see Figure 12.2.
Interestingly, the linear and nonlinear models give a similar light angle, indicated

by the arrow.
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The R function that plots Figure 12.2 and estimates the coordinates of the light

source is shown below.

carpet=function()

{

dump("carpet", "c:\\MixedModels\\Chapter12\\carpet.r")
d - scan("c:\\MixedModels\\Chapter12\\carpetc.pgm",what="")
d - as.numeric(d[2:length(d)])

K - d[1] # number of rows

J - d[2] # number of columns

y=d[4:length(d)] # image data

carp.dat - matrix(y, nrow = K, ncol = J)

x1=rep(1:K,times=J);x2=rep(1:J,each=K)

print("Linear model:")

o - lm(y ~x1 + x2)

print(summary(o))

print("Nonlinear model:")

o - nls(y ~a1 * sqrt(((a2 - x1)^2 + (x2 - a3)^2)),

start = c(a1 = sqrt(0.006), a2 = 2000, a3 = -500))

print(summary(o))

a - coef(o)

par(mfrow = c(1, 1), err = -1, mar = c(3, 3, 1, 2))

image(1:J, 1:K, t(carp.dat), axes = T, xlab = "", ylab = "",

xlim = c(0, 1800), ylim = c(-500, J),col=gray(0:255/255))

points(a[2], a[3], pch = 16, cex = 1.5)

N - 30

h - 3000/N

theta - seq(from = 0, to = 8 * atan(1), by = 0.01)

for(i in 2:(N - 1)) {

dc - h * i

x - dc * cos(theta)

y - dc * sin(theta)

lines(a[2] + x, a[3] + y, lty = 2)

}

arrows(a[2], a[3], J, 0)

}

We make a few remarks on this code: (1) the txt file with this code is saved

using dump command every time the code is issued; and (2) the carpet image is

downloaded into an R session using the scan command as an array string, the third

and fourth elements of the array are the number of rows and columns in the image,
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and the image itself starts from the fifth element (this is a typical representation of

the image in the PGM format).

Problems for Section 12.2

1. Test the hypothesis that the distance from the light source to the bottom-

right corner of the rug is more that 2000 pixels. Approximate the squared distance

(b− 621)2 + b2 by a normal distribution and use the delta method to estimate the
variance.

2∗. Take a picture of an object near the window and measure the location of

the window. Save the image in PGM format and repeat the analysis of the light

location. Is your estimate close to the actual window location?

12.3 Kolmogorov—Smirnov image comparison

An essential task of image analysis is image comparison. Under the assumption

that images are subject to random noise, we want to test if the images are the

same. In this and the following section we say that two images are the same if they

have the same grayscale distribution. Clearly, if two images are the same, up to a

small noise, they should have close grayscale distributions. The reverse is not true.

Thus, grayscale distribution analysis is helpful when images of the same content are

compared. In this section and the next, nonparametric and parametric approaches

are developed.

The image histogram is a frequently used technique of image processing. However,

in addition to the histogram, one can compute the distribution, or more specifically,

the cumulative distribution function, as the sum of the probabilities that a pixel

takes a grayscale level of less than  where  = 0  255 If {} is the image
histogram,

 =

X
0=0

0 (12.2)

is the empirical cumulative distribution function. As for any distribution function,

 is nondecreasing within the interval [0 1]

One advantage of distribution analysis is that it facilitates visual image compar-

ison by plotting grayscale distribution functions on the same scale (it is difficult

to plot several histograms on the same scale). Another advantage is that the dis-

tribution function allows the application of nonparametric statistical tests, such as

Kolmogorov—Smirnov.

12.3.1 Kolmogorov—Smirnov test for image comparison

Let  (1) = { (1)   = 0  255} and  (2) = { (2)   = 0  255} be two gray level
distributions for the 1 × 1 and 2 × 2 images 1 and 2 We compute the

maximum, b = max

¯̄̄

(1)
 − 

(2)


¯̄̄
 the distance of one distribution from the other.

Kolmogorov and Smirnov proved that if theoretical distributions are the same, then
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the probability that the observed distance, b is greater than  is

() = 2

∞X
=1

(−1)−1 exp ¡−222¢ 
where  = [

√
 + 011

√
 + 012] and  = (1122)(11 + 22);

see Hollander and Wolfe (1999) for more details. Thus, () may be treated

as the -value of the test. The greater the distance between distributions, the less

the probability (). For example, if two images yield distance  and the

computed probability ()  005 we reject the hypothesis that the two

images are the same with a 5% error. We can find  such that () = 005

giving the threshold  = 1358

As a word of caution, all nonparametric tests, including the Kolmogorov—Smirnov,

have the alternative  : 1() 6= 2() for at least one . Thus, these tests may

be conservative.

FIGURE 12.3. Histology sections of untreated and treated tumors. The living cancer cells

are the dark spots (blobs). To test statistically that the two images have the same grayscale

distributions, the Kolmogorov—Smirnov test is used.

12.3.2 Example: histological analysis of cancer treatment

We illustrate the Kolmogorov—Smirnov test with a histological analysis of breast

cancer treatment (Sundaram et al., 2003). Two 512 × 384 images of proliferative-
activity tumor tissue sections are shown in Figure 12.3. The dark blobs are cancer

cells. In the control tumor (left), no treatment was given. In the treated tumor

(right), a combination of drug, EB 1089, and radiation seems to have reduced the

number of living cancer cells. We want to confirm this reduction statistically by the

Kolmogorov—Smirnov test by computing the -value.
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FIGURE 12.4. Histogram and cumulative distribution functions for two histology images.

The distribution function of the treated tumor is less (almost everywhere) than that of the

control (the maximum difference is 0.169), which means that the control image is darker.

The Kolmogorov—Smirnov distribution function distance is used to test the statistical

significance.

The grayscale histogram and the distribution functions for these images are shown

in Figure 12.4. Clearly, it is difficult to judge the difference in the images by his-

togram. To the contrary, the distribution functions reveal the difference with the

absolute maximum 1/10. We notice that the treatment distribution function is be-

low control (for most gray levels), which means that the right image is lighter. For

these images 11 = 22 = 512× 384 = 19661× 105 yielding  = 52882 and

()  00001 near zero. Since the -value is very small, we infer that the null

hypothesis that the two images are the same should be rejected.

The R program that plots the two images (Figure 12.3) and computes  (Figure

12.4) is shown below.

KSimage=function(job=1)

{

dump("KSimage","c:\\MixedModels\\Chapter12\\KSimage.r")
if(job==1)

{

par(mfrow = c(1, 2), mar = c(1, 1, 3, 1), omi = c(0, 0, 0, 0))

d - scan("c:\\MixedModels\\Chapter12\\grp11.pgm",what="")
d - as.numeric(d[9:length(d)])

nr - d[1];nc - d[2]

d - matrix(d[4:length(d)], nrow = nr, ncol = nc)
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image(1:nr, 1:nc, d, xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

mtext(side = 3, "Control", line = 0.25, cex = 2)

d - scan("c:\\MixedModels\\Chapter12\\grp51.pgm",what="")
d - as.numeric(d[9:length(d)])

nr - d[1];nc - d[2]

d - matrix(d[4:length(d)], nrow = nr, ncol = nc)

image(1:nr, 1:nc, d, xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

mtext(side = 3, "Drug+Radiation", line = 0.25, cex = 2)

}

if(job==2)

{

par(mfrow = c(1, 2), mar = c(4, 4, 3, 1))

d - scan("c:\\kluwer\\image\\sujatha\\grp11.pgm",what="")
d - as.numeric(d[9:length(d)])

nr - d[1]

nc - d[2]

J1 - nr * nc

d1 - d[4:length(d)]

d - scan("c:\\kluwer\\image\\sujatha\\grp51.pgm",what="")
d - as.numeric(d[9:length(d)])

nr - d[1]

nc - d[2]

print(c(nr, nc))

J2 - nr * nc

d2 - d[4:length(d)]

h1 - f1 - h2 - f2 - rep(0, 256)

for(i in 0:255) {

h1[i + 1] - length(d1[d1 == i])/length(d1)

h2[i + 1] - length(d2[d2 == i])/length(d2)

}

for(i in 2:256) {

f1[i] - f1[i - 1] + h1[i]

f2[i] - f2[i - 1] + h2[i]

}

f1[256] - f2[256] - 1

matplot(cbind(0:255, 0:255), cbind(h1, h2), type = "l",

col = 1,xlab="",ylab="")

mtext(side = 2, "Probability", line = 2.5, cex = 1.75)

mtext(side = 3, "Histogram", line = 1, cex = 1.75)
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matplot(cbind(0:255, 0:255), cbind(f1, f2), type = "l",

col = 1,xlab="",ylab="")

lines(0:255, f1, lwd = 3)

lines(0:255, f2, lwd = 3, lty = 2)

mf - max(abs(f1 - f2))

jm - (0:255)[abs(f1 - f2) == mf]

segments(jm, -0.25, jm, 0.6)

text(jm+5, 0.63, paste("max=", round(mf, 3)),adj=0)

mtext(side = 3, "Distribution function", line = 1, cex = 1.75)

legend(0, 1, c("Control", "Treatment"), lty = 1:2, cex = 1.25,

lwd = 3)

mtext(side = 1, "Grayscale level, byte", line = -1,

outer = T,cex = 1.5)

J - (J1 * J2)/(J1 + J2)

lambda - mf * (sqrt(J) + 0.11/sqrt(J) + 0.12)

j - 1:10000

js - rep(1, 10000)

js[seq(from = 2, to = 10000, by = 2)] - -1

Q - 2 * sum(js * exp(-2 * j^2 * lambda^2))

cat("\nbyte.max =",jm," max.cdf.distance =",round(mf,3),
" lambda =",round(lambda,3)," QKS =", round(Q,4),"\n")

}

}

We make several comments: (1) The two tasks correspond to job=1 (Figure 12.3)

and job=2 (Figure 12.4); (2) different software uses different preambules when sav-

ing images in PGM format, in this particular case starting from the 9th element;

and (3) arrays h1 and h2 contain histograms and f1 and f2 contain cdf values for

the two images, alternatively, one can use the cumsum function to compute the cdf.

Problems for Section 12.3

1. Plot () as a function of  using lambda=seq(from=1,to=2,by=.01).

Replace ∞ with 1000 and use matrix operation to avoid the loop: compute the

value under the sum as a matrix with 1000 rows and length(lambda) columns.

Then use %*% to get () Confirm that (1358) ' 005
2. Use a t-test (Z -score) to test that the treatment image is darker than the

control (this is how images are compared using traditional statistics). Does this test

confirm the KS test? What test is preferable?

12.4 Multinomial statistical model for images

The aim of this section is to develop a statistical model for gray images based on the

grayscale distribution (or simply, gray distribution). As in the previous section, it is
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assumed that the image is specified by 256 grayscale levels, and therefore our image

analysis is content-independent. Based on this model, we shall develop parametric

tests for image comparison.

The gray distribution of an image {( )  = 1    = 1  } is specified
by 256 probabilities  = Pr( = ) where  = 0 1  255 is the gray level.

Assuming that among  image pixels there are 0 black pixels, the 1 pixels have

gray level  = 1 2 pixels have gray level  = 2 etc. the mutual probability can be

modeled via the multinomial distribution, namely,

(0 1  255) =
()!

0!1!255!
00 11 255255  (12.3)

Rao (1973), Bickel and Doksum (2001), Agresti (2002). In this formula, the sum of

probabilities is 1,
P255

=0  = 1 and
P255

=0  =  is the total number of pixels.

Value  is called the frequency, so (12.3) specifies the probability that in  inde-

pendent experiments the random variable  takes the value 0 0 times, takes the

value 1 1 times, and so on. An important assumption is that these random exper-

iments are independent. For a binary image, the multinomial distribution reduces

to the binomial distribution. Model (12.3) is called a multinomial model for gray

images.

The log-likelihood function for the multinomial gray level model is

(0  255) =  +

255X
=0

 ln

where  = ln()!−P255
=0 ln ! a constant. To estimate probabilities {} from

a  × image by maximum likelihood, we maximize  with respect to {} under
the restriction that

P255
=0  = 1 Introducing the Lagrangian

L(0  255 ) =
255X
=0

 ln − 

Ã
255X
=0

 − 1
!


and taking derivatives with respect to  we obtain L = − = 0 which
implies that  =  Hence, the ML estimate of the th probability is

b =  =



 (12.4)

This is a familiar estimate of the gray level probability–the ML estimate is just

the histogram value,  The variance and covariance of these probability estimates

are

var(b) = 1


(1− ) cov(b b0) = − 1


0  (12.5)

To estimate the variance and covariance, we use the histogram value  instead of

 in formulas (12.5). As follows from (12.5), b is consistent because its variance
vanishes for large images,  → ∞ We shall apply the multinomial model for

image comparison and entropy computation.



620 12. Statistical Image Analysis

12.4.1 Multinomial image comparison

Using the notation of Section 12.3, let  (1) and  (2) be 1×1 and 2×2 gray

images. We want to test whether they have the same gray distribution. In other

terms, the null hypothesis is 0 : 
(1)
0 = 

(2)
0   

(1)
255 = 

(2)
255 Two tests can be

suggested, assuming that the images are independent: the 2 and the likelihood ratio

test. Unlike the Kolmogorov—Smirnov test, these tests are parametric because they

assume the multinomial distribution specified by the 256 probability parameters.

In the 2-test, we estimate 256 × 2 = 512 probabilities b(1) = 1 and b(2) =

2 as the proportion of pixels with the gray level  Assuming that images are

independent, the variance of the difference is the sum of variances, and as follows

from formula (12.5), var(1 − 2) = 1(1− 1)(11) +2(1− 2)(22).

Then, under the null hypothesis, the scaled sum of squares approximately has a

2-distribution,

255X
=0

(1 − 2)
2

1(1− 1)(11) + 2(1− 2)(22)
∼ 2(255) (12.6)

We take off one degree of freedom because the sum of probabilities is 1. This has

little effect because the total degrees of freedom is large. If both 1 and 2 are

zero, the corresponding term is dropped from the summation. One can interpret

(12.6) as the squared scaled distance between the two histograms. Following the

line of statistical hypothesis testing, if the value on the left-hand side of (12.6)

is greater than the (1 − )th quantile of the 2-distribution with 255 degrees of

freedom, we reject the hypothesis that the two images have the same gray level

distribution with error  Alternatively, one can report the -value as the 2-tail

density.

In (12.6) we assumed that {1 − 2  = 0  255} are independent, but as
follows from (12.5), they are negatively correlated. To account for correlation, we

remove the histogram component with the maximum value 1+2 so that h1∗−h2∗
is the 255 × 1 vector of histogram differences with the corresponding 255 × 255
covariance matrix V1∗ +V2∗. By construction, the sum of elements is less than 1

and the covariance matrix is nonsingular. Then, in matrix form, similar to (12.6),

we have an alternative 2-test,

(h1∗ − h2∗)0(V1∗ +V2∗)−1(h1∗ − h2∗) ∼ 2(255) (12.7)

In the likelihood ratio test, we need to compute three log-likelihood values, an

individual value from each image and a combined value. More precisely, the max-

imum value of the log-likelihood function from image  = 1 2 can be expressed in

terms of frequencies {} as follows:
 = ln!−

X
ln ! +

X
 ln  − ln

X


= (ln!−  ln) +
X
( ln  − ln !)

where  =  is the number of pixels in the th image. Next, we combine the

two images into one gray level set with 3 = 11 + 22 elements yielding the

frequencies {3  = 0  255} and the resulting log-likelihood maximum value

3 = (ln3!− 3 ln3) +
X
(3 ln 3 − ln 3!)
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According to the likelihood ratio test, under the null hypothesis,

2(1 + 2 − 3) ∼ 2(256) (12.8)

Again, if the left-hand side of (12.8) is larger than the (1 − )th quantile of the

2-distribution, we reject the hypothesis.

Problems for Section 12.4

1. Apply the 2 and the likelihood ratio tests to the histologic images in the

previous section. Compute the -values for both tests. Modify the function KSimage.

Use lgamma(k+1) to compute ln !.

2∗. Generate synthetic treatment images from the control image in Figure 12.3

using the formula  0
( ) = b255× (( )255)c  where ( ) is the gray

intensity of the ( )th pixel of the original control image,  is a positive number

( = 1 does not change the image), and bc means that the number is rounded
to the nearest smallest (R function floor); see the function KSimageR. Parameter

 is image-specific, e.g. it may take values according to a beta distribution with

parameters  and  Use this method to generate random images for computing

the power function of image comparison for three methods: KS, chi-square, and

log-likelihood. Make your statement regarding the efficiency of the methods.

12.5 Image entropy

The purpose of an image is to convey information; thus information theory can

play an important role in image analysis. Specifically, we use the notion of entropy

to measure the amount of image information (Resa, 1961; Kulback, 1968). In the

image processing literature, image entropy is used in the context of image coding.

Here, we apply this concept for optimal image reduction. In this section we show

how image entropy can be used for optimal image reduction and enhancement.

Although entropy, as the major concept of Shannon communication theory, has

some application in image science (see Barrett and Myers, 2004 for a review), we

apply it for optimal image reduction. First, we demonstrate the use of entropy for

binary images and then for gray and color images.

Recall that if is a discrete random variable, which takes values {  = 1 2  }
with probability {Pr( = ) = } the entropy is defined as E = −

P
=1  log 

In the special case when  is binary, the entropy is E = −[ log +(1−) log(1−)].
Usually, in communication theory, the base of the logarithm is taken to be 2, making

interpretation of the entropy a piece of information measured in bits. For example,

for a binary random variable with  = 0 the entropy is zero. Indeed, by L’Hospital’s

rule,

E(0) = − lim
→0

 log2 − (1− 0) log2(1− 0)

= − lim
→0

log2 

−1
=

1

ln 2
lim
→0

1

12
= 0

Similarly, one can prove that E(1) = 0 These results have a clear interpretation:

when  = 0 or  = 1 the binary variable takes a constant value, and therefore there
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is no information in the message. Maximum entropy in a binary message occurs

when  = 12 Indeed, differentiating the entropy, one obtains

E 0 = −1− log2 + log2(1− ) + 1 = log2(1− )− log2 
E 00 = −−1 − (1− )−1 = −1[(1− )]  0

The inequality says that E is a concave function on (0 1)Maximum E occurs where
E 0 = 0 which yields  = 12 This means that maximum information contained in

a sequence of zeros and ones is attained when they occur with equal probability.

For example, the amount of information in a  × binary image with the pro-

portion of white pixels equal  is

× E () = − [ log2 + (1− ) log2 (1− )] bits (12.9)

In (12.9) it is assumed that pixel gray levels are uncorrelated. Now we apply the

entropy notion to optimal image gray level reduction.

FIGURE 12.5. The original image Lena, the canon of image processing, and three optimal

reductions with minimum information loss. The Entropy Per Pixel (EPP) of the original

image is close to the absolute maximum, 8 bits. Information in the binary image is almost

one-eighth of that in the original image.
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12.5.1 Reduction of a gray image to binary

Let  be the original  × gray image with distribution  = {  = 0  255}
We want to reduce this image to a binary image by determining a threshold ∗ such
that all gray levels less than ∗ are set to 0 and all gray levels greater than ∗ are
set to 255. We want to determine a ∗ that reduces the original gray image with
minimum information loss. As follows from (12.9), the entropy of a binary image

gets maximum when the number of black and white pixels is the same,  = 12

Thus, ∗ is defined by the equation ∗ = 12 the median. In other words, an

optimal threshold is the median of gray distribution. This choice yields minimum

information loss.

We illustrate the image reduction in Figure 12.5. This image, Lena, is a canon in

the image processing community, and many works use this image as an example.

The reduction of the original image to binary is such that the number of black and

white points in the binary image is the same. The R function that plots Figure 12.5

and computes EPP can be downloaded by issuing

source("c:\\MixedModels\\Chapter12\\lena.r")

12.5.2 Entropy of a gray image and histogram equalization

Histogram equalization is a well known technique of image processing that helps

improve an image. In this section we provide an information basis for this technique

and develop a general algorithm to reduce a gray image with minimum information

loss.

Assuming that levels of a gray image follow a multinomial distribution (12.3), the

entropy of a  × image is defined as

E = −
255X
=0

 log2 

Since the theoretical probability,  is estimated by the histogram value,  we

come to the following.

Definition 45 Image Entropy Per Pixel (EPP) is defined as

 = −
255X
=0

 log2  bits, (12.10)

where  is the histogram value.

Theorem 46 The absolute maximum of EPP is 8 bits. This maximum is attained

when each of 256 gray levels occurs with equal probability 1/256 (i.e., when the

histogram is flat).

Proof. The proof is similar to the maximum likelihood estimation at the begin-

ning of this section. We want to maximize (12.10) over {} under the restrictionP255
=0  = 1 Introducing the Lagrangian

L(0  255 ) =
255X
=0

 ln − 

Ã
255X
=0

 − 1
!
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FIGURE 12.6. Optimal reduction of the original image, Lena to a binary and four-level

gray image. To reduce Lena to a four-level image with minimum information loss, the

thresholds must be 88 (first quartile), 128 (median), and 156 (third quartile).

and taking the derivative with respect to  we obtain  =const= 1256 This

corresponds to the flat histogram. The absolute maximum is

 = −256 1
256

log2
1

256
= 8

This theorem creates a theoretical basis for histogram equalization technique: by

modifying the gray levels to make the histogram flat, we increase the EPP to a

maximum.

For example, as follows from entropy theory, to reduce a gray image to an image

with four gray levels with minimum information loss, the thresholds must be the

quartiles of the distribution function  see Figure 12.6. In other words, let 1 (the

first quartile) be the gray level such that ()4 pixels of the original image have

gray levels of less than 1 Let 2 be the median, i.e., 50% of pixels have gray levels

of less than 2 Finally, let 3 (the third quartile) be the gray level such that the

number of pixels with gray levels greater than 3 is ()4 This choice of thresholds

makes the four-level image the most informative.

For a binary image with an equal number of black and white pixels EPP = 1 bit

because −05 log2(12) = 1 For an image with four equal gray levels, EPP = 2 bits.
Generally, if an image has 2 equal gray levels, EPP =  bits (see Figure 12.5).

Problems for Section 12.5

1. The frequency of English letters can be downloaded as read.table("c:\\
MixedModels\\Chapter12\\EnglishLetters.txt"). Compute the entropy of the
statement: I love statistics based on the letters frequency.

2. Prove that the maximum enropy of a categorical random variable is attained

at  = 1 where  ≥ 0 and
P

=1  = 1
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3. Define a 16-bit image and compute the maximum entropy.

4. The function histgr plots the two images depicted in Figure 12.7. Apply his-

togram equalization to the original image. Compare your result with that produced

by commercial software.

FIGURE 12.7. Two images produced by function histgr. Histogram equalization is done

by commercial software. Use your own histogram equalization image processing technique

to see if the result is the same.

12.6 Ensemble of unstructured images

Usually, one deals with several images of the same object. Then we speak of an

ensemble of images. Similar to a sample of shapes, we distinguish two features. On

one hand, it is assumed that images are of the same object, or in statistical terms,

they belong to the same general population. On the other hand, they may have

image-specific features associated with image variation. For example, if several aerial

pictures are taken to assess fire damage, they are all taken over the same area but

may differ because the fire damage is not uniform. The same principle was used in

the previous chapter, where within- and between-shape variations were recognized.

In contrast, in classical statistics, it is assumed that a sample is drawn from one

general population and therefore that there would be no room for image-specific

variation. In the language of the mixed model methodology, population features

are described by population-averaged parameters, and image-specific features are

specified by image (or cluster, subject) -specific parameters.

In this section we deal with a sample of independent gray images defined by the

× integer (gray level) matricesM  = 1 2  Typical questions: (a) Are 

images the same? (b) Are two groups of images the same? (c) Does image ( + 1)

belong to the same group of images? A statistical test for two gray images was

developed in Section 12.3, here we assume that   2
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There are two extreme approaches to modeling an ensemble of images. First, we

can assume that all  imagesM have identical gray level multinomial distributions

(12.3). Then one can pool the images and obtain estimates of the probabilities as if

we had only one image. Clearly, if all images have the same size, the histogram and

the distribution function are the arithmetic means of the individual histograms and

the distribution functions. Under this assumption, a comparison of two groups of

images reduces to a comparison of two distribution functions, and the Kolmogorov—

Smirnov test applies.

Second, we can assume that images have different gray level multinomial dis-

tributions, and therefore estimation collapses to a separate estimation yielding 

vectors bπ.

Perhaps the most attractive approach would be to assume that, on the one hand,

images are from same general population, but on the other hand, they have image-

specific variation. Such an approach takes an intermediate position between the two

extreme approaches.

In this section we model the image through its gray level distribution, and there-

fore such analysis is content independent; usually, such images are unstructured.

For example, using this approach one may come to the conclusion that images of

an apple and an orange are the same because they have the same gray level distri-

bution. However, this approach may be useful when a sample of apples is analyzed.

The model for an ensemble of structured (content dependent) images is described

in Section 12.8.

The volumetric or mean intensity approach, which can be expressed via histogram

values as
P255

=0  is used traditionally to quantify gray images, especially in the

analysis of functional MRI data. One may expect the present approach to be more

powerful because it is based on an analysis of all 256 histogram values {  =
0  255}.
Application of the theory of mixed models is crucial to the analysis of an en-

semble. Modeling hypotheses reduce image analysis to a linear mixed effects model

(Chapters 2 to 4), a generalized linear mixed model (Chapter 7), or a nonlinear

mixed effects model (Chapter 8).

12.6.1 Fixed-shift model

The fixed-shift model assumes that the ensemble of  gray images {M  = 1 2 

 } have the same gray level distribution up to an image-specific gray level shift.
This model, the fixed-shift intensity model, may be viewed as a generalization of the

fixed subject-specific intercept model of Section 7.2.2. This is perhaps the simplest

model for an ensemble of images; in the next section we consider a more complex

random-shift model. One application of this model is when microscopic images of

the same homogeneous tissue are taken at different spots and different exposures. If

the images were taken at the same exposure, they would produce the same (up to a

random deviation) histogram and distribution function, but a nonconstant exposure

implies that some images are darker and some lighter.

We assume that all 256 gray levels are modeled; however, this is not a strict

requirement. For example, one can safely omit gray levels with zero frequency for

all images.
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When modeling a series of dependent images, it is more convenient to parame-

terize the multinomial distribution (12.3) in a different way, as follows:

0 =
1

1 +
P255

=1 

  =



1 +
P255

=1 

  = 1  255 (12.11)

where the {1  255} are new parameters. Obviously, this parameterization im-
plies that all probabilities are positive and the sum is 1. One can easily express the

new parameters in terms of the old:

 = ln − ln0  = 1  255 (12.12)

so  can be interpreted as the relative probability on the log scale. There are some

advantages to working with  rather than : (a) representation (12.11) guarantees

that all probabilities are positive for any , and (b) there is no restriction on

{1  255} unlike
P255

=0  = 1 The fact that {} may take any value from −∞
to∞makes it possible to assume a normal distribution, substantially simplifying the

estimation problem, see the next Section. Transformation (12.12) was used by Besag

(1974) but without reference to the multinomial distribution. This transformation

is the basis for reduction of a nonlinear multinomial model to a linear mixed effects

model, Section 12.6.3. For reasons explained later, this transformation will be called

logit.

In this section we assume that  images have the same gray level distribution

but differ by a constant  Thus, on the log scale the th image is specified by

{+   = 1  255}. Then, letting  = exp() we come to the th multinomial

model, as a straightforward generalization of (12.11),

0 =
1

1 +

P255
=1 


  =




1 +

P255
=1 


  = 1  255

Assuming that the  images are independent, the joint log-likelihood function, up

to a constant, takes the form  =
P

=1

P255
=0  ln where  is the frequency

in the th image. In terms of  we have

 =

X
=1

"
( − 0) ln −  ln

Ã
1 +

255X
=1



!#
+

255X
=1



where  =
P

=1  is the total frequency of the th gray level. Our aim is to

obtain the maximum likelihood estimators (MLEs) for  and  as maximizers

of  in closed form. When the {} are held fixed, we find the maximizer for 

exactly from the equation  = 0, yielding

 =
 − 0

0
P255

=1 

  = 1  

Plugging this solution back into  we eliminate nuisance parameters {} to obtain
a profile log-likelihood function, up to a constant term,

(1  255) = −( − 0) ln

255X
=1

 +

255X
=1

 (12.13)
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where 0 =
P

=1 0 is the frequency of the background and  =
P

 is the total

number of pixels. Taking the derivative with respect to  we finally come to the

MLE, b = ln 

 − 0
  = 1  255 (12.14)

As the reader can see, this solution follows from  = 
P255

=1  as a simple

estimator of the probability from the total frequency (note that
P255

=1 
 = 1).

Consequently, the MLE for the shift is b = 0 − 1

FIGURE 12.8. Typical 1024×1024 gray image of the rat brain. The white bands are vessels
filled with oxygenated blood.

12.6.2 Random-shift model

When the number of images () is large, a random-shift model may be useful. The

similarity to the random intercept model in logistic regression is obvious, see Section

7.2 for a discussion.

Assuming that the random intercepts are iid with normal distribution  ∼
N (0 2) following the line of Section 7.3, we come to a generalized linear mixed
model with a marginal log-likelihood function to maximize

 = −
2
ln2 +

255X
=1

 +

X
=1

ln

Z ∞
−∞

(−0)− ln(1+
255

=1 
+)− 1

22
2
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Several approaches are available. First, one can use numerical integration to evaluate

the integral with a given precision. Second, the FSL approach of Section 7.3.2 can

be applied. Third, approximation methods such as methods based on Laplace ap-

proximation are straightforward to generalize, see the respective sections of Chapter

7.

Hypoxia BOLD MRI data analysis

We illustrate the fixed-shift model with hypoxia BOLD MRI rat brain data, Dunn

et al. (2002). The research was concerned with how a shortage of oxygen affects

the brain oxygen concentration shortly after hypoxia. First, the MRI images were

derived for eight normal rats before treatment (the control group). Next, the rats

were shortly put in a hyperbaric chamber with a below-normal oxygen concentration

and the MRI images were repeated right after (the hypoxia group). A typical 1024×
1024 gray image before treatment is shown in Figure 12.8; the white bands are

vessels filled with oxygen. The null hypothesis is that the hypoxia group has the

same oxygen concentration as that of the control group. In Figure 12.9 we show all

image data for the two groups. Obviously, the animal variation is substantial and

overshadows possible differences between groups.

As in image analysis in general, and in this example in particular, quantification

is an important step. How should we quantify oxygen in an image: by vessel count,

area, length, density? There exists software, such as NIH Image, that facilitates

image segmentation and counts the number of vessels (or, more precisely, distinct

objects in the image) automatically. However, we should warn the reader that imag-

ing software is far from perfect, and although “automatic” sounds tempting for this

example, it is difficult, if not impossible, to count vessels because we are dealing

with brain sections. The vessels are cut at an angle, the same vessels are cut twice,

and so on. Instead, we prefer to quantify oxygen by the amount of white color, or

more precisely, by the density expressed via the gray level distribution. An advan-

tage of this approach versus vessel count is that it reflects the oxygen concentration

in the vessel and therefore may be more representative.

For exploratory statistical analysis, we compare the cumulative gray level distrib-

ution functions for each rat group in Figure 12.10. As the reader can see, in general,

the images from the control group are lighter suggesting that the amount of oxygen

in the hypoxia group is higher (note that if  and  are two random variables

such that    then ()   () where  () is the distribution function).

To confirm this statistically, we apply the fixed-shift model of Section 12.6.1. This

model seems adequate because the distribution functions for each rat are similar

up to a shift. Thus, we (a) analyze each group separately, assuming that rat gray

distributions are the same up to a shift   = 1  8 (b) and compare the resulting

{b } and {b } using the 2-distribution as in Section 12.4.1.
In Figure 12.11 we show the maximum likelihood estimates of  computed by

formula (12.14). Obviously, the control MR images are darker, and therefore right

after hypoxia, oxygen flow into the brain exceeds normal. The 2-test confirmed

this visual finding with a -value of less than 0.001.
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FIGURE 12.9. Rat brain images in two groups of animals (the R function hypoxiaRAT).

The variation across animals is substantial and overshadows the difference between groups.

A proper statistical model should address animal heterogeneity. The random-shift mixed

model seems to be appropriate.
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Below we show the R function that reads the data and plots Figure 12.9.

hypoxiaRAT=function()

{

dump("hypoxiaRAT", "c:\\MixedModels\\Chapter12\\hypoxiaRAT.r")
n - 1024

x - 1:n

# we will save the graph in the file

bmp(file="c:\\MixedModels\\Chapter12\\Hypoxia\\hypoxia.bmp",
width=500,height=1500)

par(mfrow=c(8,2),mar=c(1,1,1,1),omi=c(0,0.25,0.25,0))

for(i in 1:8)

for(igr in 1:2)

{

if(igr==1) cc="c" else cc=""

fn=paste("c:\\MixedModels\\Chapter12\\Hypoxia\\Group",
igr,"\\_",i,cc,"_1a_p.pgm",sep="")

d - scan(fn,what="")

d - matrix(as.numeric(d[12:length(d)]), n, n)

image(x, x, d, xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

if(igr==1) mtext(side=2,paste("Rat #",i,sep=""),

line=0.25,cex=1.25)

if(i==1 & igr==1) mtext(side=3,"Control group",

line=1,cex=1.5)

if(i==1 & igr==2) mtext(side=3,"Treatment group",

line=1,cex=1.5)

}

dev.off() # saving the graph

}

12.6.3 Mixed model for gray images

It is straightforward to generalize the random-shift model to a mixed model with

a more complex statistical structure. A statistical model for an ensemble of gray

images has a hierarchical structure. In a first-stage model, it is assumed that the

gray distribution of each image  = 1   is specified by the multinomial model

(12.11) with random, image-specific probabilities

0 =
1

1 +
P255

=1 


  =


1 +
P255

=1 


  = 1  255 (12.15)

In this model, { } are random and specified in the linear second-stage model.

For example, for the random-shift model of Section 12.6.2, the second-stage model
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takes the form   =  +  where  is the random effect. More generally, if

τ  = ( 1   255)
0 the second-stage model in vector form can be expressed as

τ  = ρ+ b  = 1   (12.16)

where ρ =(1  255)
0 defines the population-averaged gray distribution. The error

term b is the vector of the random effects and has zero mean and a 255 × 255
covariance matrix D∗, see Section 7.7. For example, for the random-shift model, we
have b = 1. Obviously, the covariance matrix of the random effects,D∗ should be
structured in a parsimonious way because otherwise the number of distinct elements

would be too large to estimate, 256× (256 + 1)2 = 32 896
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FIGURE 12.10. Cumulative gray-level distributions in two groups for each rat. For

most rats the brain images are generally lighter in the control group. We apply the

2-distribution to test the overall difference between the groups.

Several covariance structures for D∗ may be suggested:

• Isotropic structure. Matrix D∗ is proportional to the identity matrix, i.e., the
off-diagonal elements are zero and all variances are equal.

• Heterogeneous independent structure. The off-diagonal elements are zero, but
the diagonal elements are different and unknown. The number of unknown

elements in D∗ is 255.

• Toeplitz covariance structure, (11.15). It is assumed that  neighboring gray

levels are dependent with  + 1 parameters to estimate.

• Band covariance structure such that the covariance between the th and th

elements of b is zero if | − |  . If  = 0 we obtain the heterogeneous

structure. If  = 1 only two neighboring gray levels correlate.
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The second-stage model may contain explanatory variables, as did the linear

growth curve model of Section 4.1,

τ  = Aρ+ b (12.17)

whereA is the design matrix. For example, if two ensembles are comparedAρ = ρ1
if the image is from the first ensemble, and Aρ = ρ1 + δ if the image is from the

second ensemble. Then, the two ensembles are the same if 0 : δ = 0Model (12.17)

can incorporate image differences due to gender, age, etc. In functional MRI it may

reflect the time when a stimulus occurred.

The statistical model for gray levels specified by (12.15) and (12.17) belongs to

the family of generalized linear mixed models studied in Chapter 7. Exact methods

of estimation may be computationally intensive, especially when the dimension of

the random effect is 255.

12.6.4 Two-stage estimation

It is attractive to apply the two-stage estimation for an ensemble because (a) gray

probabilities are random and image-specific, and (b) individual estimates are easy

to obtain. The two-stage estimation approach was applied to a nonlinear mixed

model in Section 8.5. As follows from (12.4), the individual probability estimate is

equal to the histogram value,  Hence, assuming that the image background is

black (0 prevails), we compute logits

 = ln − ln0  = 1  255 (12.18)

as individual estimates of { } in model (12.15). Having estimates (12.18), we
substitute τ  with t = (1  255)

0 in model (12.17) and arrive at the second-
stage model t = Aρ+ η Notice that the error term η differs from b because t
is an estimate of τ  and consequently, the variance of η is larger than that of b

Since the covariance matrix of individual probability estimates has an exact form,

(12.5), we can approximate the covariance of t by the delta-method, as is realized

below.

Proposition 47 Let bπ be a 256 × 1 vector estimate with the variance-covariance
matrix specified by (12.5). Let  = ln b − ln b0  = 1  255 be components of

vector t Then

cov(ln − ln0 ln − ln0) ' 1



½
1 + 10 + 1 if  = 

1 + 10 if  6= 

or, in matrix form,

cov(t) ' 1



£
(1 + −10 )110 +D−11

¤


where D1 =diag(1  255)

Proof. We use the delta-method to approximate the covariance matrix of t =

(ln b1 − ln b0  ln b255 − ln b0)0 Letting π1 = (1  255)
0 and D1 =diag(π1)
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FIGURE 12.11. Maximum likelihood estimates of  for  = 1  255 for the fixed-shift

model, (12.14). Obviously, the MR images of the control group are lighter than those of

the hypoxia group. Consequently, the damage to brain vesels by hypoxia is statistically

significant.

we express tbπ = [−−10 1;D−11 ] a 255 × 256 derivative matrix. The 256 × 256
covariance matrix of bπ can be partitioned as

C =

∙
0(1− 0) −0π01
−0π1 D1

¸


By the delta-method, the covariance matrix t can be approximated as

(tbπ)C(tbπ)0 = [−−10 1;D−11 ] ∙ 0(1− 0) −0π01
−0π1 D1

¸ ∙ −−10 10
D−11

¸
= −20 0(1− 0)11

0 + −10 10π
0
1D
−1
1 +D−11 0π1

−1
0 1

0 +D−11 D1D
−1
1

= −10 (1− 0)11
0 + 2110 +D−11 = (1 + −10 )11

0 +D−11 

Applying this result and assuming that the {t} have a normal distribution, we
arrive at the linear model for logits,

t ∼ N (Aτ D∗ +T)  = 1   (12.19)

where matrix T is fixed and given by

T =
1



£
(1 + −10 )11

0 +D−11
¤

and  =  is the number of pixels and D1 =diag(1  255) is the diagonal

matrix of histogram values. In a special case without explanatory variables, (12.16),
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we have A = I. The unknown parameters are τ and D∗ If D∗ were known, vector
τ could be estimated by Generalized Least Squares (GLS),

bτ = Ã X
=1

A0
(D∗ +T)

−1A

!−1Ã
X
=1

A0
(D∗ +T)

−1t

!

with covariance matrix

cov(bτ ) = Ã X
=1

A0
(D∗ +T)

−1A

!−1


For model (12.16), we have

bτ = Ã X
=1

(D∗ +T)
−1
!−1Ã

X
=1

(D∗ +T)
−1t

!


Matrix D∗ may be estimated either by maximum likelihood or by the method of

moments for the linear growth curve model of Section 4.1. For example, for model

(12.16) in the heterogeneous case, compute 2 = −1
P

(−)2 and estimateD∗
as S−−1P

=1T where S is the diagonal matrix with the ( )th element 
2
 If

matrix bD∗ is not positive definite, we apply the projection procedure described in
Section 2.15.2.

1 54 sz 1 55 sz 1 56 sz 1 57 sz 1 58 sz 1 59 sz 1 60 sz

1 61 sz 1 62 sz 1 63 sz 1 64 sz 1 65 sz 1 66 sz 1 67 sz

1 68 sz 1 69 sz 1 70 sz 1 71 sz 1 72 sz 1 73 sz 1 74 sz

FIGURE 12.12. Typical MR frame images of the amygdala—hippocampal complex of a

schizophrenia patient.

12.6.5 Schizophrenia MRI analysis

Schizophrenia is a major mental disorder and is characterized by impaired think-

ing and hallucinations. It affects about 1% of the general population. Advances in

Computerized Tomography (CT) and magnetic resonance imaging (MRI) created a

new dimension for brain research, including for schizophrenia (Shenton, 2001). The
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existing approaches to studying the human brain and its abnormalities using MRI

data can be roughly classified into three groups: (1) shape, (2) asymmetry, and

(3) volumetric analysis. Here we focus on the latter approach. In the volumetric

approach, the organ or region of interest is quantified by one number (Godszal and

Pham, 2000). In our approach, we analyze all nonzero gray levels, and therefore the

analysis may be more powerful.

In this section we analyze the temporal lobe, or more precisely the amygdala-

hippocampal complex, with the MRI data kindly provided by Dr. M. Shenton of

Harvard Medical School. The study design description and the appropriate statisti-

cal analysis are given in the original article by Shenton et al. (1992). The MRI brain

data consist of equidistant frames for 15 schizophrenia patients and 15 matched nor-

mal controls. In Figure 12.12 MR frame images of the amygdala—hippocampal com-

plex of the first schizophrenia patient are shown. In Figure 12.13, image frames are

shown for the first normal control. All images have the same size,  =  =const

 = 1  30 =  . We want to determine whether the amygdala-hippocampal com-

plex of the schizophrenia patients and that of controls is different.

2 54 con 2 55 con 2 56 con 2 57 con 2 58 con 2 59 con 2 60 con

2 61 con 2 62 con 2 63 con 2 64 con 2 65 con 2 66 con 2 67 con

2 68 con 2 69 con 2 70 con 2 71 con 2 72 con 2 73 con 2 74 con

FIGURE 12.13. Typical images of the amygdala-hippocampal complex of a normal control.

The R function below reads 39 cases and plots the MRI frames from 41 to 61

as a 3 × 7 panel plot (the first 15 cases are controls and the remainder belong to
schizophrenia patients).

schiz=function ()

{

dump("schiz", "c:\\MixedModels\\Chapter12\\schiz.r")
cc = "c:\\MixedModels\\Chapter12\\schiz\\case"
for (i in 1:30) {

par(mfrow = c(3, 7), mar = c(1, 1, 1, 1),omi=c(0,0,.25,0))

for (j in 1:21) {

d = scan(paste(cc, i, "\\case", i, ".0", j + 50,".pgm",
sep = ""), what = "", quiet = T)
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dm = matrix(as.numeric(d[12:length(d)]), nrow = 256, ncol = 256)

image(1:256, 1:256, dm, col = gray(0:255/255),xlab="",ylab="",

axes=F)

mtext(side=3,paste("Frame",j+50),line=.2,cex=.75)

}

mtext(side=3,paste("Case",i),outer=T,cex=1.25,line=.25)

}

}

Each image has only eight different gray levels: 0, 95, 127, 159, 191, 212, 223, and

255 (0 is the black background), so instead of 256 gray levels, we have 8. We start

the analysis by computing the logits  = ln(0) where  is the histogram

value and  = 1  30  = 1  7 Then we plot the mean logit for each gray level

in each group; see Figure 12.14. This plot reveals that for gray levels 95, 127, 159,
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FIGURE 12.14. Mean logit as a function of the frame index for different gray levels in two

groups. On average, normals have a higher logit.

and 223 the logits for normals are higher than those for controls. This finding hints

of the following linear statistical model for logits

 =  + ( − 1) +  (12.20)

 = 1 2  15;  = 1 2;  = 1 2  21;  = 1 2 3 4

where  is the patient index in group  ( = 1 codes a schizophrenia patient and

 = 2 codes a normal control);  is the MRI frame index; and  is the gray level

index (gray levels are: 95, 127, 159, and 223). As follows from this model, the logits

for each gray level and frame are different, with the mean  and the difference
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between the two groups constant,  Assuming that the {} are iid, we can
estimate (12.20) by simple regression analysis, yielding the OLS estimate b = 0129
with the -statistic 9.79 and -value  0.00001. The difference in gray levels 95,

127, 159, and 223 for schizophrenia and controls is significant. Model (12.20) can be

modified in many ways. For example, one may consider heterogeneous or dependent

logits. Also, the logit model may serve as a diagnostic tool to identify schizophrenia

using the membership test of Section 3.8.1.

Model (12.20) is easy to apply to compare two samples of images, as a general-

ization of the standard -test, where 0 :  = 0

Problems for Section 12.6

1. Develop a for zero-shift test, 0 : 1 = 2 =  =  = 0 in the framework of

a fixed-shift model.

2∗. Develop a maximum likelihood estimation algorithm for maximization  from

Section 12.6.2. Write an R function that implements the GH quadrature. Apply

Laplace approximation, as discussed in Chapter 7, to approximate the log-likelihood.

Write an R function and compare its performance against GH quadrature MLE.

3∗. Plot logits and cumulative distribution functions for the rat hypoxia data for
the two groups; reproduce Figure 12.10. Compute a two-stage estimate and repro-

duce the result depicted in Figure 12.11. Use the approximate covariance matrix to

test the statistical significance of the treatment effect.

4∗. Generalize the two-stage estimation procedure for two groups with different
logit parameter  the treatment effect. Generalize methods developed in the pre-

vious problem to estimate the treatment effect and apply them to the rat hypoxia

data. Use the likelihood-ratio test and the Wald test based on the covariance matrix

in Proposition 47.

5. The function bioimage reads 28 PGM histology image files and plots them as

depicted in Figure 12.15. Use the mixed model for grayscale intensities from Section

12.6.3 to compare the treatment effect (the more living cells, the darker the image,

see Figure 12.3). Compute the pairwise p-values for image comparison. Is there a

synergy between radiation and drug? Use formula (10.17) to estimate the synergy.

6. Modify the function schiz to plot 30 cdfs for 15 controls and 15 schizophre-

nia patients (use the built-in function cumsum and use different colors for the two

groups). Do the same but for the mean on the logit scale as in Figure 12.14. Ap-

ply model (12.20) to discriminate controls from patients. Develop a mixed model

with a subject-specific intensity level. Test whether the heterogeneity variance is

statistically significant.

12.7 Image alignment and registration

Earlier, we dealt with an image gray level distribution that is content-independent.

Starting in this section, we consider content-dependent images. Before doing statis-

tical analysis or image comparison, images must be at the same scale, and conse-

quently, they must be properly aligned and rotated (registered). We use the terms

alignment and registration as synonyms, although sometimes alignment is used when

only translation is allowed. For example, if one wants to know the difference between
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FIGURE 12.15. Twenty eight histology images in four cancer treatment groups (’control’

means no treatment). This plot was created by the R function bioimage. Are the differences

in the treatments statistically significant?
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images (as in the before-and-after analysis), it is tempting to take a pixel-by-pixel

difference. The problem is that usually a pixel on one image does not exactly corre-

spond to a pixel on another image. An example of slightly different images is shown

in Figure 12.16. Before taking the difference, the images must be aligned (we de-

scribe the detail of alignment in Section 12.7.8). Remember that we faced a similar

problem with shapes where they must be re-sized and rotated, see Section 11.6.

Image registration is a frequently used technique, especially in medical appli-

cations, particularly in the context of brain and medical imaging. See the survey

literature by Maintz and Viergever (1998) and a collection of papers in the book by

Hajnal et al. (2001). Several commercial software packages for image registration

are available, including Automated Image Registration (AIR: http://bishopw.loni.

ucla.edu/AIR5) and Statistical Parametric Mapping (SPM: http://www.fil.ion.ucl.ac.uk/spm).

The same methodology is also used for image coregistration, when images are of the

same object or region but derived by different imaging techniques, such as MRI and

PET (Kiebel et al., 1997; Ashburner and Friston, 1997).

FIGURE 12.16. Two images taken a few seconds apart and their difference before and after

alignment. Before computing a pixel-by-pixel difference, the source and target images must

be aligned. The first image is 525× 504 and the second image is 483× 508 Points on the
images (black dots) serve as the landmarks for the alignment.

The purpose of this section is to introduce the problem of image registration

and discuss several cost functions (registration criteria). To account for coordinate-

specific image transformation, random registration is introduced. We show that
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FIGURE 12.17. Rigid transformation of the clock image (rotation by angle ) This figure

was generated by the R function clockROT.

random registration can be studied in the framework of the nonlinear mixed effects

model of Chapter 8. To simplify, we consider only planar images.

12.7.1 Affine image registration

Several aspects should be taken into account when two images have to be co-

registered: (a) they may have different mean intensity; (b) they may have different

scale intensity; (c) the registration may be linear or nonlinear; (d) rotation may be

allowed or not allowed; (e) and the transformation may be rigid or general affine

(linear). An important step in image registration is the choice of the criterion or

cost function (Woods et al., 1998a,b).

Let M = {( )  = 1    = 1  } be two images,  = 1 2 Some-

times,M1 is referred to as the source andM2 as the target image. We want to find

an affine (linear) transformation such that the mean sum of squares,

 =
1

|M|
X

()∈M
[1( )− 2(1 + 2+ 3 4 + 5+ 6)− ]

2
 (12.21)
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is minimum. Sometimes (12.21) is referred to as the mean-squared error (MSE)

criterion or cost function. Eight parameters are to be determined: the intensity shift

(), the scale intensity () and the vector of affine parameters, β = (1  6)
0.

Integer indices  and  must satisfy the following restrictions: 1 ≤  ≤ 1 1 ≤
 ≤ 1 1 ≤ 1 + 2 + 3 ≤ 2 1 ≤ 4 + 5 + 6 ≤ 2 Apparently, indices

for the target image must be rounded to the nearest integer unless the values are

interpolated. The set of pairs ( ) that satisfy these restrictions constitutes the

setM so the summation in (12.21) is over all pairs ( ) ∈M Since the number

of terms in the sum depends on the affine parameters, we normalize it dividing by

the number of elements in the set, |M|  Therefore,  is the mean-squared error

(MSE) criterion . An implicit assumption of (12.21) is that the variance is constant,

otherwise a weighted MSE criterion should be used. Parameters 2 and 6 control

image zooming or shrinkage; parameters 3 and 5 control rotation; parameters 1
and 4 control image translation (shift). An advantage of affine transformation is

that no restrictions are imposed on β. If one wants to allow only translation and

rigid transformation (rotation and resizing), six parameters are reduced to four by

letting 2 = 6 and 3 = −5 If the sizes of the source and target images are
the same, we come to a nonlinear problem because the coordinates of the target

image are 1 +  cos  +  sin  and 4 −  sin  +  cos  where  is the (clockwise)

rotation angle, see Figure 12.17 for an illustration. As with shapes, the choice of

transformation should be dictated by the way in which images are sampled. If images

have the same or close intensity distribution (histogram), we may assume that  = 1

and  = 0 which leads to a simpler MSE.

As is easy to see, criterion  is roughly equivalent to maximization of the correla-

tion coefficient between the two images. Indeed, assuming that the affine parameters

are fixed, the minimum of (12.21) in a vector form is attained at the least squares

solution for  and  or more precisely,

min


X
(1 − 2 − )2 = (1− 2)

X
(1 −1)

2

=
[
P
(1 −1)(2 −2)]

2P
(2 −2)2

 (12.22)

where 2 is the squared correlation coefficient. This identity implies that instead of

 one can maximize (12.22), with  and  eliminated and with 1 substituted for

by 1( ) and 2 substituted for by 2(1 + 2+ 3 4 + 5+ 6) How-

ever, unlike the MSE, (12.22) is not a quadratic function of parameters even after

linearization. To avoid this nonlinearity, one can alternate between the MSE mini-

mization and  and  estimation by ordinary least squares. A statistical model-based

approach to image registration allows the testing of various hypotheses regarding

the type of registration, e.g. whether images are statistically indifferent up to a rigid

transformation, see more details in a recent paper by Demidenko (2009).

12.7.2 Weighted sum of squares

From a statistical point of view, registration criterion (12.21) implicitly assumes

that the variance of the difference between the two images is the same (gray level

independent). Consequently, white will dominate because it has magnitude around
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255, and black, 0. We can modify the unweighted criterion,  by adjusting for the

gray level variance, (12.5). Let  be the image histogram so that the variance of

 is proportional to  (1−  ) Assuming that the two images are independent,

we arrive at the weighted criterion:

 =
1

|M|
X

()∈M

[1( )− 2(1 + 2+ 3 4 + 5+ 6)− ]
2

( )

(12.23)

with the weight ( ) = 1
(1 − 1

) + 2
(1 − 2

) as the variance of the

difference, 1 −2 This weight is parameter independent and can be computed

beforehand.

In an alternative approach, we assume that the gray values follow the Poisson dis-

tribution, see Section 7.5.1. Since for this distribution the mean equals th evariance,

we come to the weight ( ) =1( ) +2( )

12.7.3 Nonlinear transformations

Affine transformation may be extended to nonlinear transformation: for example,

to account for individual variation. Perhaps the easiest nonlinear transformation is

a quadratic transformation of the form 1 + 2 + 3 + 4
2 + 5

2 + 6 An

advantage of this transformation is that it is still linear in parameters. Polynomials

of a higher order can be employed, such as in the package AIR mentioned above.

12.7.4 Random registration

The image registrations discussed so far are rigid because the coordinate system

of the target image is expressed as a function of the coordinates of the source

image. In real image comparison and registration, the coordinate system may be

randomly deformed, as illustrated in Figure 12.18. The aim of this section is to show

how random registration can be described in the framework of the nonlinear mixed

effects model studied in Chapter 8.

Rigid SD = 0.05 SD = 0.1

FIGURE 12.18. Regular (rigid) and random registration mapping. The strength of the

coordinate system deformation (+ +) depends on the standard deviation of random

 and .
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In random registration, we assume that the affine vector β is random and location-

specific. The statistical model for random registration is written in a hierarchical

fashion. To simplify, we shall assume that the identity for the scale intensity,  = 1

and the intensity shift,  = 0 In the first-stage model, we express the source through

the target image with random coordinates as

1( ) =2(1 + 2+ 3 4 + 5+ 6) + ( ) (12.24)

where β = (1 2 3 4 5 6)
0 is a six-dimensional random vector

and  is a random variable with zero mean. It is assumed that the random affine

vector β and the error term ( ) are independent. In the second-stage model,

we specify the affine vector as a random vector with unknown means,

β = β + b  = 1    = 1   (12.25)

where b is a vector of random effects with zero mean. Following the line of mixed

model terminology, β is local coordinate-specific and β is a global or population-

averaged vector of affine parameters. Several assumptions can be made regarding the

covariance structure. For example, to address spatial correlation, one may assume

that neighboring elements correlate following the planar autoregression or Markov

random field scheme

 =

X
=−

X
=−

++ +   = 1 2  6 (12.26)

This model can be approximated parsimoniously with a Toeplitz covariance matrix

as in Section 4.3.4; see more details in Section 12.9.1.

In matrix form, we combine the models (12.24) and (12.25) into one as

M1 =M2(β + b) + ε (12.27)

This is a nonlinear mixed effects model where M1 is treated as data and M2 as

a nonlinear function. Although M2 is a discrete function (matrix), we can assume

that the size of this matrix is large enough to treat it as a continuous function of

coordinates. To meet this assumption, interpolation methods may be applied. As

follows from Sections 8.7 and 8.8.2, assuming normal distribution for the error term

and random effects, Laplace approximation leads to minimization of the penalized

sum of squares

kM1 −M2(β + b)k2 + b0V−1b⇒ min
b

 (12.28)

where cov(b) =2V and cov(ε) =2I Several approximate methods to estimate

affine global parameters and covariance matrix V are suggested in Chapter 8.

12.7.5 Linear image interpolation

So far, we have assumed that the target image is evaluated at the rounded values

1 + 2 + 3 and 4 + 5 + 6 A more precise evaluation is based on im-

age interpolation. Several methods exist, including B-splines (Gonzalez and Woods,

2002). Here we consider the simplest one–linear interpolation.
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Mathematically, the problem is formulated as follows. Let a grayscale image be

given by the matrix M ={( )  = 1    = 1 } We want to approxi-
mate (+  + ) using the  -values at four neighboring points {(+  +

)  = 0 1  = 0 1} where, without loss of generality,  and  are positive and less
than 1. To interpolate, we split the unit square into two triangles and then use the

linear interpolation on each of them (sometimes this process is called triangulation).

The are two ways to split the square into two triangles–dividing by the diagonal

(0,1)—(1,0) or (0,0)—(1,1); to be specific, we take the latter. It is elementary to find

that the triangular interpolation formula is given by

(+   + ) =( ) (12.29)

+

½
[(+ 1  + 1)−(  + 1)]+ [(  + 1)−( )] if   

[(+ 1 )−( )]+ [(+ 1  + 1)−(+ 1 )] if  ≤ 

It is elementary to check that this interpolation is continuous and consists of two

planes, with the edge at the main diagonal. An example of the triangular interpo-

lation is shown in Figure 12.19 (see the function imageLI). Image interpolation is

useful when several images of different size are aligned simultaneously, as in Section

12.8.1. To indicate that an image is linearly interpolated, we use a tilde,e.
Original 4 x 4 image

1 2 3 4

1
2

3
4

Linearly interpolated 16 x 16 image

2 4 6 8 10 12 14 16
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4
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2

1
4

1
6

FIGURE 12.19. The original 4×4 image and 16×16 image linearly interpolated by formula
(12.29).

12.7.6 Computational aspects

Two issues complicate the minimization of the unweighted or weighted sum of

squares of residuals: (a) we deal with discrete minimization (indices are integers),

and (b) the function  may have several local minima. If images have different

sizes, an interpolation may be applied to reduce the discrete nature (Gonzalez and

Woods, 2002). To exclude false minima, several starting points should be used to see

whether the minimization converges to the same minimum, see Appendix 13.3 for
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a general discussion. Below we discuss how to minimize the sum of squares without

derivatives.

12.7.7 Derivative-free algorithm for image registration

In the continuous optimization problem  (x) where x is a vector with contin-

uous elements, the derivative plays the central role. Indeed, many maximization

algorithms can be expressed via the update formula x+1 = x + H
−1
 g where

H is a positive definite matrix, g =  (x = x)x is the derivative,  is the

step length (typically,  = 1), and  = 0 1  . Sometimes, computation of the

derivative is very complex or even not feasible. Furthermore, in some instances, the

derivative does not exist. For those who code in FORTRAN, there is a program-

ming technique that generates a subroutine for derivative computation, ADIFOR

(Bischof et al., 1992).

Now we discuss a derivative-free optimization technique, or more specifically, a

derivative-free approach to the sum of squares minimization in nonlinear regression

suggested originally by Ortega and Rheinboldt (1970). Later, Ralston and Jennrich

(1978) reinvented the algorithm and called it DUD. This algorithm may be use-

ful when the argument is not continuous but takes integer values as in the image

registration criteria discussed above. An important by-product result is that this

algorithm generates the covariance matrix for the registration parameters so that

various statistical hypotheses may be tested; for example, if the transformation

is rigid. Parameters  and  may be eliminated, but then the criterion function

becomes nonsquare, (12.22). Otherwise, one can alternate between  and  min-

imization, when  and  are held, finding  and  from linear least squares after

the transformation parameters are determined.

The derivative-free algorithm DUD is described as follows. We want to minimize

the sum of squares (SS) of residuals,

(β) =

X
=1

( − (β))
2
 (12.30)

where β is the -dimensional parameter vector and  = (β) is the regression

function; some computational detail was discussed in Section 6.1. For example, for

image registration (12.21),  is the gray level, 1 and  is the gray level, 2

The Gauss—Newton algorithm usually works well and has the form

β+1 = β + (G
0
G)

−1G0
(y− f) (12.31)

where G = fβ is an  × matrix evaluated at β = β and f = (1  )
0

y = (1  )
0 Can we avoid derivative computation, or, more specifically, can we

approximate matrixG by computing values of function ? Indeed, a finite-difference

approach does just that using the approximation β ≈ ((β+∆1)−(β))∆
where 1 is the ×1 vector of 10s and ∆ is a scalar. When the components of β are
integers, the finite-difference approach is, perhaps, the only way to assess the deriv-

ative, or, more precisely, the relative change (because the derivative is not defined).

The DUD algorithm suggests an economical way to approximate the derivatives

based on previous computations of f  Indeed, let the values of the regression vector
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function be known at  +1 points, β0β1 β  and we want to approximate ma-

trix G at β0 It is assumed that  ≥  and the  +1 vectors in the -dimensional

space are in general position, meaning that vectors {β−β0  = 1  } have rank
 From the definition of the derivative, we have

f − f0 'G(β − β0) (12.32)

where f = f(β) for  = 1   The linear system (12.32) forG has  unknowns

and  equations. If  =  this system may be solved exactly forG. Otherwise, it

is overspecified, so, generally, we findG using the weighted sum of squares criterion,

tr(GA−F)0(GA−F)Ω−1 ⇒ min
G

 (12.33)

where A is an × matrix with the th column β−β0 and F is an × matrix

with the th column f − f0 The  ×  weight matrix Ω−1 is positive definite.
For example, Ω may be a diagonal matrix with the th diagonal element equal to

kf − f0k2  Then points closer to f0 will have more influence on the derivative ap-
proximation. Solving this quadratic optimization problem, we find the LS estimate

for the derivative of the regression function based on  + 1 function values:

G = FΩ−1A
0
(AΩ−1A0)−1 (12.34)

Matrix A has full rank, and therefore matrix AA0 is nonsingular. In fact, formula
(12.34) is quite general and may be applied for derivative approximation of any

nonlinear function, not necessarily in the nonlinear regression framework. In a spe-

cial case, when  =  matrix A is square and then G = FA−1 This formula has
a clear finite-difference flavor, just expressed in a matrix form. Thus, for  = 

weighting is irrelevant.

Now, coming back to the SS minimization, substituting (12.34) into the Gauss—

Newton update formula (12.31), we finally obtain the DUD algorithm,

β+1 = β + (AΩ
−1A0

)(AΩ
−1F0FΩ

−1A0
)
−1AΩ

−1F0(y− f0)
Several variations of the DUD algorithm exist. First, one can incorporate the step

length to provide that the value of the SS drop from iteration to iteration. Second,

one may use all previous iteration points or just  closest to the current beta

vector. Third, for a special case, when  =  and Ω = I, matrix A becomes an

 ×  nonsingular matrix and the derivative matrix (12.34) is approximated as

G ' FA−1 Then formula (12.34) simplifies to
β+1 = β +A(F

0
F)

−1F0(y − f0)
Clearly, G approximated by (12.34), may be treated as its continuous counterpart,

and therefore, 2(G0G)−1 serves as a covariance matrix estimate for β where 2 is
the minimum SS divided by the degrees of freedom, −

12.7.8 Example: clock alignment

In image registration, the choice of the starting point for the affine parameters, β0

is very important. It is a good idea to determine this vector from the respective
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landmarks on both images. We illustrate this technique on clock registration; see

Figure 12.16. Aligning two 2D figures requires at least three landmarks, assuming

that all six parameters are unknown. If only a rigid transformation is allowed (2 =

6 and 3 = −5), two landmarks would be enough. Generally, more landmarks
are better. If there are  landmarks on the first and second images, {( )  =
1 } and {( )  = 1 } we approximate 2 equations,

 ' 1 + 2 + 3  ' 4 + 5 + 6

by least squares (if  = 3 this system can be solved exactly). When the target and

source images are not aligned, the SE = 32.7, and after landmark alignment, SE =

10.7.

The R function that plots four clock images in Figure 12.16 and uses landmarks

for image alignment is shown below. The function matR provides image reflection

about the -axis for correct display. Landmark point coordinates for the original

and target images are in arrays cL1 and cL2, respectively. The affine transformation

parameters are found from the linear least squares that minimizes the Euclidean

norm between the landmarks on the original and target images. The indices should

be rounded to avoid image display issues.

clockFIG=function()

{

dump("clockFIG", "c:\\MixedModels\\Chapter12\\clockFIG.r")
matR=function(M) #matrix reflection about y-axis

{

nr=nrow(M);nc=ncol(M)

MR=M

for(i in 1:nc) MR[,nc-i+1]=M[,i]

return(MR)

}

c1 - scan("c:\\MixedModels\\Chapter12\\clock1.pgm",what="")
nr1 - as.numeric(c1[2]); nc1 - as.numeric(c1[3])

M1 - matrix(as.numeric(c1[5:length(c1)]), nrow = nr1, ncol = nc1)

c2 - scan("c:\\MixedModels\\Chapter12\\clock2.pgm",what="")
nr2 - as.numeric(c2[2]); nc2 - as.numeric(c2[3])

M2 - matrix(as.numeric(c2[5:length(c2)]),nrow=nr2,ncol=nc2)

cL1 - matrix(c(327, 148, 376, 256, 269, 344, 128,

280, 191, 101, 252, 111), nrow = 2)

cL2 - matrix(c(302, 154, 349, 258, 245, 343, 108,

283, 169, 108, 228, 116), nrow = 2)

cL1 - cL1[, 1:5]; cL2 - cL2[, 1:5]

nLc1 - ncol(cL1)
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for(i in 1:nLc1) {

i1 - 1 + 2 * (i - 1)

i2 - 2 * i

X[i1, 1] - 1

X[i1, 2:3] - cL1[1:2, i]

X[i2, 4] - 1

X[i2, 5:6] - cL1[1:2, i]

}

xx - t(X) %*% X

xy - t(X) %*% as.vector(cL2)

beta - b - solve(xx) %*% xy

par(mfrow = c(2, 2), mar = c(1, 1, 3, 1))

image(1:nr1, 1:nc1, matR(M1), xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

mtext(side = 3, "Source image", line = 0.25, cex = 1.25)

for(i in 1:nLc1)

points(cL1[1+2*(i-1)], nc1-cL1[2*i]+1, pch = 16, cex = 1.25)

image(1:nr2, 1:nc2, matR(M2), xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

mtext(side = 3, "Target image", line = 0.25, cex = 1.25)

for(i in 1:nLc1)

points(cL2[1+2*(i-1)], nc1-cL2[2*i]+1, pch = 16, cex = 1.25)

del - matrix(nrow = nr1, ncol = nc1)

r1 - min(nr1, nr2)

r2 - min(nc1, nc2)

image(1:r1, 1:nc1, matR(M1[1:r1,1:r2]-M2[1:r1,1:r2]),xlab ="",

ylab = "", axes = F,col=gray(0:255/255))

mtext(side = 3, "Difference before alignment",line=0.25,cex=1.25)

for(i in 1:nr1)

for(j in 1:nc1) {

p1 - round(b[1] + b[2] * i + b[3] * j)

q1 - round(b[4] + b[5] * i + b[6] * j)

if(q1  0 & q1 = nc2 & p1  0 & p1 = nr2)

del[i, j] - M1[i, j] - M2[p1, q1]

}

image(1:nr1, 1:nc1, matR(del), xlab = "", ylab = "", axes = F,

col=gray(0:255/255))

mtext(side=3, "Difference after alignment",line=0.25,cex=1.25)

}
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Problems for Section 12.7

1. Pick the center of the clock as an additional landmark and redo the image

alignment (use the clock program). Does it improve the image alignment?

2. Apply linear interpolation to the image used in the function histgr from

Section 12.5 (modify the function imageLI for this purpose). Do linear interpolation

and histogram equalization commute? (Is the order of operation important?)

3. See the effect of a slight quadratic alignment transformation by modifying the

function clockROT.

4∗Write an R function which implements the DUD algorithm. Test your function
against nls.

5. Prove that matrix (12.34) is the solution of minimization problem (12.33).

12.8 Ensemble of structured images

Now we develop a statistical model for an ensemble of structured images following

the line of the shape model developed in the previous chapter. Thus, the issue of

image registration becomes central. It is assumed that the ensemble consists of 

independent images {M  = 1  } of the same object(s), subject(s), scene, etc.
It is allowed to have partial images (showing only part of the scene), but the majority

of images should have commonality. Images may have different size, magnification,

and viewpoint, so that they are registered up to an affine transformation. Our goal

is to reconstruct the true object(s), subject(s), scene, or the true image.

Two kinds of assumptions on image-specific transformations may be taken, fixed

and random. The first assumption leads to a generalization of the Procrustes model

described in Section 11.6, and the second assumption leads to a nonlinear mixed

effects model as a generalization of the shape model of Section 11.6.3. To start, we

assume that images have the same mean and scale intensity; at the end we relax

this assumption.

12.8.1 Fixed affine transformations

Assuming that the images, up to an unknown fixed transformation, differ from the

true image by a random error with constant variance, we come to the statistical

model,

f(1 + 2+ 3 4 + 5+ 6) =( ) + ( ) (12.35)

Since images may have different sizes we use the interpolated images indicated by

a tilde; see Section 12.7.5. Also, in (12.35), we let

 = 1   = max{}  = 1   = max{} (12.36)

In this model, we treat β = (1  6)
0 as an unknown affine image-specific

parameter vector subject to estimation.
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The task is to recover the true image If errors {} are normally distributed, the
minimization of the mean-squared error (MSE) is equivalent to maximum likelihood,

1

|M|
X
=1

X
()∈M

hf(1 + 2+ 3 4 + 5+ 6)−( )
i2

 (12.37)

whereM is the index set such that the sum of squares is well defined:

M = {( ) : 1 ≤ 1 + 2+ 3 ≤  1 ≤ 4 + 5+ 6 ≤ }

for all  = 1   where ( ) are from (12.36) and |M| denotes the number
of elements in the set. Apparently, the images must have a common intersection

because otherwise the set M is null. Obviously, if the affine parameters are fixed,

the mean image is simply equal to the ensemble average,

( ) =
1



X
=1

f(1 + 2+ 3 4 + 5+ 6) (12.38)

There are two ways to minimize (12.37): (1) alternate between  separate MSE

minimizations over β and then substitute with the mean (12.38), or (2) minimize

(12.37) over 6 parameters simultaneously with  in place of 

12.8.2 Random affine transformations

If, due to sampling design, images are taken at random angles and have a random

size, a model with random affine parameters may be adequate,

β = β + b b ∼ N
¡
β 2D

¢
  = 1  (12.39)

where β is a known vector, say β = (0 1 0 0 0 1)0MatrixD is the scaled covariance
matrix of the random effects b and determines how “free” β are. The complete

model is written in hierarchical fashion: the first-stage model is the same, (12.35),

and the second-stage model is (12.39). Combining these into one model and using

matrix notation, we obtain a nonlinear mixed effects (NLME) model,

fM(β + b) =M+ ε (12.40)

Following the line of argumentation for the random effects shape model of Sec-

tion 11.6.3, model (12.40) requires a large number of images with a relatively small

matrix D For example, if images are rotated up to 2 the model with fixed trans-

formations may be more adequate.

Several methods of NLME models are discussed in Chapter 8. Laplace approxi-

mation minimizes the penalized MSE,

1

|M|
X
=1

⎧⎨⎩ X
()∈M

hf(1 + 2+ 3 4 + 5+ 6)−( )
i2

+(b − β)0D−1(b − β)0
ª
 (12.41)
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If D → 0 the second term dominates in (12.41), resulting in b = β: All images

are the same up to a random error  If D becomes large, the second term vanishes

and we arrive at a model with fixed affine parameters, (12.37) and (12.38).

If images have different scale intensity, independent of transformation, we can

assume that  ∼ N (1 2) and incorporate it into (12.40). The mean intensity
parameter is unneeded because  is unknown.

Problems for Section 12.8

1. Does the fixed affine image transformation reduce to image alignment from the

previous section when  = 1?

2∗. Develop statistical models for fixed and random rigid transformation of images
of different size.

3∗. Develop a maximum likelihood estimation of the average true image with

images observed up to a random rigid transformation.

12.9 Modeling spatial correlation

So far we have assumed that components of the error term ε in the image models,

such as (12.27) or (12.39), are independent. Clearly, this is a very simplifying as-

sumption because in real images neighboring pixels usually correlate. Much research

has been done in the area of statistics to address spatial correlation (Ripley, 1981;

Cressie, 1991). Two dominant statistical models for spatial correlation are simul-

taneous and conditional spatial autocorrelation (SAR and CAR). In imaging, the

stochastic distribution on the plane is called a random field, and the most popular

stochastic model is called a Markov Random Field (MRF). The latter is a variation

of spatial autoregression and, similarly to (12.26), can be defined as

( ) =

X
=−

X
=−

(+   + ) + ( ) (12.42)

where {( )} are iid uncorrelated random variables with zero mean, and {  =
−− + 1    = −− + 1 } are (2 + 1)(2 + 1) fixed parameters.

We refer the reader to a collection of papers edited by Chellappa and Jain (1993)

with various applications of the MRF theory to image models.

An important observation is that one can express  through  from (12.42) via

a linear operator. Consequently, if {( )} has normal distribution, components
of matrix ε also have joint multivariate normal distributions with the covariance

matrix defined by {} Hence, instead of modeling (12.42), one can model the
covariance matrix of ε This approach may be more computationally attractive for

the estimation of spatial correlation parameters, such as  in (12.42). The desir-

able correlation structure is simple enough to derive an estimation procedure and

complex enough to describe a variety of possible spatial correlations.

A convenient way to generate a normally distributed random (field) matrix with

correlated entries is to pre- and postmultiply a matrix with iid elements by fixed

matrices. Indeed, let η = {( )  = 1    = 1  } be a  × matrix with

iid normally distributed elements with zero mean and variance 2 Let V and
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V be  ×  and  ×  fixed matrices dependent on some parameter vector, θ

Define

ε = VηV (12.43)

a  × random matrix. The elements of this matrix have zero mean and correlate.

Matrices V and V should fulfill the following requirements: (1) matrices V
0
V

and VV
0
 are invertible, (2) at θ = 0 these matrices turn into identity matrices.

The first assumption excludes matrix deficiency and will be justified later. The

second assumption means that {ε} become iid as a special case of (12.43). Now we
derive the distribution and the covariance matrix implied by (12.43) expressed in

terms of the ()×1 vector, vec(ε). Using the properties of the Kronecker product,
we obtain

vec(ε) =vec(VηV) = (V
0
 ⊗V)vec(η)

But vec(η) ∼N ¡
02I

¢
 so we find that

vec(ε) ∼N ¡
02(V

0
V ⊗VV

0
)
¢
 (12.44)

Now it is clear why the first requirement guarantees that matrix ε has a nondegen-

erate distribution.

Having found the observation matrix ε as the difference between the image data

and estimated mean, we estimate the parameters of matrices V and V by maxi-

mum likelihood. Since the distribution is normal, the log-likelihood, up to a constant,

takes the form

 = −05©() ln2 + ln |V0
V ⊗VV

0
|

+−2vec0(ε)(V0
V ⊗VV

0
)
−1vec(ε)

ª


Using properties of the Kronecker product, we simplify

ln |V0
V ⊗VV

0
| = ln |V0

V|+ ln |VV
0
| 

(V
0
V ⊗VV

0
)
−1 = (V0

V)
−1 ⊗ (VV

0
)
−1

and

vec0(ε)(V0
V ⊗VV

0
)
−1vec(ε)

= vec0(ε)[(V0
V)

−1 ⊗ (VV
0
)
−1]vec(ε)

= tr((V
0
V)

−1ε0(VV
0
)
−1ε)

Thus, function  can be written as

 = −05© ln2 + ln |Q|+ ln |Q|+ −2tr(Q−1 ε0Q−1 ε)
ª
 (12.45)

where  =  is the number of image pixels, and

Q = V
0
V Q = VV

0


One can easily express 2 through Q and Q as

2 = −1tr(Q−1 ε0Q−1 ε) (12.46)
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As is seen from (12.45), the likelihood is easy to express in terms of the × and

×matricesQ andQ so we can model those, not the originalV andV. One

can interpret Q and Q as standard deviations and V and V as variances. The

log-likelihood function (12.45) is in general form and it requires further specification

for matrices Q and Q to estimate parameters of the covariance spatial matrix.

Several covariance models can be suggested for Q and Q Below we develop an

idea based on the Toeplitz structure used before to model time series in Section

4.3.4 and shape analysis in Section 11.6.3.

12.9.1 Toeplitz correlation structure

A parsimonious way to model matrices Q and Q is to assume that they have

a Toeplitz structure, meaning that the elements on the diagonal parallel to the

main diagonal are the same. In terms of the elementary Toeplitz matrix, Q can be

expressed as a linear combination with the coefficients subject to estimation:

Q = I+

X
=1

T0  (12.47)

To model various correlation lags, we use the index function 0 = 0() For instance,
if the first and the third lags are used, we haveQ = I+1T1+2T3 so that 

0(1) = 1
and 0(2) = 3 In (12.47), T0 is the 

0th elementary × Toeplitz matrix, {} are
unknown parameters, and  is the correlation depth. Examples of the elementary

Toeplitz matrix are (4.115). Several isotropic random fields (Q = Q = Q) with

Toeplitz spatial correlation (12.47) for different depth,  and  = 09 0 = 

are shown in Figure 12.20.

Vertically dependent random fields

To illustrate, we consider the vertically dependent random fields, that is when the

columns of matrix ε are independent (ε = Vη andV = I), but the rows correlate

according to a Toeplitz structure (12.47). If ε denotes the th column of matrix

ε we have iid ε ∼ N (02Q) where Q is defined by (12.47),  = 1   Two

methods of estimation for {  = 1 } are suggested below.

Variance least squares

According to this method, we estimate the variance parameters 2 and θ by min-

imizing the sum of squares of the difference between the empirical and theoretical

covariance matrices, Section 3.12. Since the empirical covariance matrix is εε
0
 and

the theoretical matrix is 2(I+
P

T0) the variance least squares (VLS) estimate

minimizes the function

(2 1  ) =

X
=1

tr

Ã
εε

0
 − 2I−

X
=1

T0

!2


where  = 2 Differentiating  with respect to 
2 and noticing that tr(T0) = 0

we obtain 2 = tr(εε0) Differentiating with respect to  we obtain  linear

equations which can be solved for 1   as in Section 4.3.
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FIGURE 12.20. Random isotropic fields with Toeplitz spatial correlations for different

depth,  and  = 09
.

FIGURE 12.21. Three vertically dependent random fields. The first is the true random

field with the left Toeplitz correlation structure. The second and third are generated using

the variance least squares (VLS) and maximum likelihood (ML) estimates.
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Maximum likelihood

Since {ε  = 1  } are normally distributed and uncorrelated, the log-likelihood
function, up to a constant term, takes the form

 = −1
2

(
 ln2 + ln

¯̄̄
I+
X

T0

¯̄̄
+
1

2

X
=1

ε0
³
I+
X

T0

´−1
ε

)


Differentiating with respect to 2 we obtain 2 = tr(εQ−1ε0) The derivatives
with respect to  are




= −05©(Q−1T0)− −2tr(ε0Q−1T0Q

−1ε)
ª
  = 1 

and the second derivatives ( = 1 ) are

2


= −05©−(Q−1T0Q

−1T0)

+−2tr(ε0Q−1T0Q
−1T0Q

−1ε) + −2tr(ε0Q−1T0Q
−1T0Q

−1ε)
ª
 (12.48)

IfH is the × matrix with the elements {−2} the Newton’s iterations
yield

θ+1 = θ + H
−1
µ


θ

¶
  = 0 1 

where  is the step length to ensure that the  value increases from iteration to iter-

ation. Matrix H−1 is the asymptotic covariance matrix for θ with the variances on
the diagonal. The value  = b(b) is a characteristic of statistical significance
and serves as guidance for the choice of the right correlation structure.

Example

The two methods of estimation are applied to a vertically dependent random field

generated with  = 5 and  = 035 − 005 and 2 = 05 see Figure 12.21. The

true values, VLS and ML estimates, are shown in Figure 12.22. As the reader can

see, maximum likelihood yields better estimates; also, the random field generated

in Figure 12.21 looks closer to the true random field.

12.9.2 Simultaneous estimation of variance and transform

parameters

Spatial correlation modifies previous models for image registration and ensemble of

images. In particular, the MSE criterion (12.21) or (12.37) will be replaced by the

weighted MSE.

To illustrate, we simply assume that we have a uniform image( )= +( )

or in matrix form, M =11
0
+ε where ε is the random field defined by (12.43).

The parameter of interest is the intensity  The log-likelihood function for this

image model is given by (12.45) with ε replaced byM−110 Let us assume that
the matrices Q and Q are known. Then the MLE for  minimizes

() = tr[Q−1 (M−110)0Q−1 (M−110)]
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FIGURE 12.22. Estimation by variance least squares (VLS) and maximum likelihood

(ML). For this example, the ML estimate is closer to the true 

Taking the derivative of  with respect to  we find the solution as the generalized

least squares estimator,

b =
10Q

−1
 MQ−1 1

(10Q
−1
 1 )(1

0
Q
−1
 1)

=

P¡
Q−1 MQ−1

¢
P

(Q−1 )
P
(Q−1 )

 (12.49)

Notice that even a simple model for intensity level leads to a weighted mean. For

a proper estimation, matrices Q and Q must be estimated previously and then

formula (12.49) applied. In the maximum likelihood approach,  and these matrices

are estimated simultaneously. Consequently, if two images are aligned, the MSE

criterion should be replaced by the weighted MSE of the form (12.23), where ( )

is the ( )th element of the inverse covariance matrix.

Problems for Section 12.9

1. Does the log-likelihood function (12.45) have a maximum; that is, is model

(12.43) specified correctly? Does this model turn into a correctly specified model

with additional restriction tr(Q) = tr(Q) = 1? Maximize  given by equation

(12.45), over Q and Q under these rectrictions.

2. The R function randmat plots 36 simulated images with various spatial correla-

tion structure. Identify what correlation structure is used. What correlation model

described in this section was used to create those images?

3. Find the information matrix for the log-likelihood by taking the expectation

of the Hessian (12.48).

4∗. There are three PGM images of the pine bark in the directory "c:\\MixedModels
\\Chapter12\\bark\\. Write an R function that plots the images. Do they look like
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vertically dependent random fields in Figure 12.21? Can these images be modeled

via the left Toeplitz correlation structure? Compute correlation coefficients between

rows and pick those that produce maximum values. These values may be used to

construct adequate Toeplitz matrices.

12.10 Summary points

• Mathematically, a gray image is a  × matrix with integer entries that take

values from 0 (black) to 255 (white). A color image in the RGB format can

be equivalently represented as three grayscale images: Red, Green and Blue.

• Image processing is a well-established discipline with a variety of techniques
to enhance and restore one image at a time. However, statistical aspects of

image estimation and testing are underdeveloped. For example, least squares

is used as a criterion of image discrepancy but not as a statistical method

of estimation of a statistical model. Consequently, the least squares estimate

(LSE) is rarely accompanied by its standard error as a characteristic of how

the LSE is sensitive to the data. Statistical hypothesis testing for images is

not developed either. For example, there is no analogy of a -test for images

when two sample images are compared.

• Classic statistics deals with numbers; statistical image analysis deals with ma-
trices of numbers. The revolution in digital imaging poses challenging prob-

lems to statistical science. A marriage of image processing and statistics cre-

ates a new discipline, Statistical Image Analysis. This chapter lays out the

foundation of this discipline using a model-based approach. In the process,

many techniques of image processing receive a theoretical justification, such

as histogram equalization and the Karhunen—Loeve transformation.

• We classify images into two groups: structured and unstructured. Structured
are images of an object (objects) or easy-to-recognize scene. Unstructured

are images without content, such as fabric (textures) or microscopic images.

Consequently, for structured images, image registration typically occurs when

objects on the first images are aligned with the same objects on the second

image. Unstructured images are analyzed using gray level distributions and

histograms. Thus, we say that two unstructured images are the same if they

have the same gray level distribution.

• The histogram is a standard tool of image processing and is typically used

for image enhancement. We apply the cumulative distribution function to

compare unstructured images. An advantage of the distribution function is

that several distribution functions can be plotted on one graph–a convenient

graphical tool for image comparison. A nonparametric Kolmogorov—Smirnov

criterion was used to test whether two images are the same.

• We have developed a multinomial distribution for grayscale image. The max-
imum likelihood estimate for the probability that the gray level of a pixel

takes value  is the histogram value   = 0 1  255 Two 
2-tests and one



12.10 Summary points 659

likelihood ratio parametric test were developed to test whether two images

have the same gray level distribution.

• Entropy is a milestone of information theory. The entropy of a binary message,
as a sequence of 1s and 0s, is zero if the sequence contains only 0 (or 1). The

entropy is maximum if the probability of 1 appearing is 1
2
 Based on the

multinomial distribution, we have introduced the notion of image entropy. If

pixels have the same gray level (blank image), the image entropy is zero.

• We have introduced Entropy Per Pixel (EPP) as a unit for image information,
 = −P log2  bits. The absolute maximum of EPP is 8 bits and

it is attained when each gray level has the same probability of occurrence,

1256. Hence, a popular image enhancement technique known as histogram

equalization maximizes EPP. Another application of the EPP concept is used

to reduce a gray image to a four-gray level image–the thresholds must be

quartiles of the distribution function.

• Typically, we deal with an ensemble of unstructured images. Two statistical
models based on the multinomial distribution were developed in the frame-

work of mixed model methodology: fixed- and random-shift models. These

are analogs of the fixed and random intercept models studied in Sections 2.4

and 7.2, respectively. Logit transformation reduces a nonlinear model to the

linear mixed model extensively studied in Chapters 2 through 4. Especially

effective is a two-stage estimation method to analyze an ensemble of images.

In particular, we have demonstrated how to use this method to compare two

samples of images as a generalization of the standard -test.

• Image alignment and registration is essential for content-dependent image
comparison; for example, when a pixel-by-pixel difference is to be taken. Four

types of model registration may be suggested: landmark-based, affine, nonlin-

ear, and random (stochastic). In the landmark model, images are aligned such

that the landmark points from two images coincide or are as close as can be

solved by least squares.

• The affine registration model is the easiest and reduces to the mean squared
error minimization over six affine coefficients (parameters) for a 2D image.

If the transformation is rigid, it reduces to four parameters. If only rotation

is required and the size remains the same, we come to a minimization under

a quadratic constraint. Nonlinear registration is typically used a polynomial

of a low degree and again reduces to the unconstrained MSE minimization.

Random registration is the most complicated and can be accomplished via the

nonlinear mixed effects model estimation of Chapter 8.

• A precise image registration requires image interpolation. The easiest is the

linear interpolation, although some more elaborate methods, such as B-splines,

exist. The derivative-free algorithm for MSE minimization may be preferable

because we deal with a discrete function and the derivatives do not exist.

The theory of linear statistical hypothesis testing may be applied to affine

parameters; for example, to test whether the transformation is rigid.
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• If several images of the same object or scene are available, the images must be
aligned first to derive the mean image. Two statistical models for the affine

parameters can be suggested: fixed and random. The former model assumes

that the parameters are fixed and unknown and therefore can be found from

individual MSE minimization. The latter model is more complex and assumes

that the affine parameters are random with population-averaged values. This

model leads to a nonlinear mixed effects model, studied extensively in Chapter

8. In particular, after Laplace approximation, the parameters are found from

a penalized MSE.

• A realistic assumption in content-dependent image analysis is to assume spa-
tial correlation that implies treating an image as a random field. Several mod-

els for spatial correlation may be suggested. A parsimonious model uses a

Toeplitz matrix and can describe complex statistical intra-image dependen-

cies. Methods of estimation developed in the earlier chapters, such as variance

least squares or maximum likelihood, apply readily. Spatial correlation com-

plicates image alignment and registration because the variance and transform

parameters must be estimated simultaneously. In particular, instead of the

mean squared error, one should use the weighted mean-squared error.

• Statistics should play a more important role in image science–from image

processing to image reconstruction. For example, little work has been done

in applying powerful statistical hypothesis testing to image comparison. To-

day, image analysis is method-driven. To make further advances, it should be

model-driven. A good example of a model-driven image reconstruction is the

PET model based on the Poisson distribution. Statistical image modeling not

only yields an efficient fitting method but also generates the covariance matrix

and/or the likelihood value needed for statistical significance testing, model

selection, and verification. We strongly believe that a statistical model-based

image analysis will bring image science to the next level.


