
Week 4. Maximum likelihood

Fisher information

Read Section 6.2 "Cramér-Rao lower bound" in Hardle & Simar.

Let 1 2   be iid sample from a general population  distributed with pdf (; )

Definition 1 Fisher information. Fisher information in a single observation is defined as

1() = 

µ
 ln ( ; )



¶2


Theorem 2 The following holds:



µ
 ln ( ; )



¶
= 0

and therefore

1() = 

µ
 ln ( ; )



¶


Theorem 3 Fisher information can be derived from second derivative,

1() = −
µ
2 ln ( ; )

2

¶


Definition 4 Fisher information in the entire sample is

() = 1()

Remark 5 We use notation 1 for the Fisher information from one observation and  from the entire

sample ( observations).

Theorem 6 Cramér-Rao lower bound. Let 1 2   be iid (random sample) from a general popu-

lation with pdf (; ) and b = b(1 2  ) be an unbiased estimator. Then
(b) ≥ 1

()
=

1

1()


Definition 7 We say that unbiased estimator b is efficient for  if its variance reaches the Cramér-Rao
lower bound.

Example 8 Prove that (a) the average b =  of  iid  ∼ N ( 2) with 2 known is efficient for 

using three definitions of information.

Proof. The pdf of the general population is

(;) =
1√
22

−
1

22
(−)2

Therefore for  ∼ N ( 2) we have

ln ( ;) = − ln(
√
22)− 1

22
( − )2

1



and
 ln ( ;)


=
1

2
( − )

The information matrix is

1() = 

µ
 ln ( ;)



¶2
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µ
1

2
( − )

¶2
=
1

4
( − )2 =

1

4
2 =

1

2

and

 =


2

and therefore

 ≥ 1

=

2




The Cramér-Rao lower bound for any unbiased estimator is

(b) ≥ 2




But

( ) =
2




That is, the variance of the mean equal to the Cramér-Rao lower bound and therefore  is efficient in the

family of unbiased estimators.

Using formula

1() = 

µ
 ln ( ; )



¶


we have

1() = 

µ
1

2
( − )

¶
=
1

4
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1

4
2 =

1
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Using second derivative

1() = −
µ
2 ln ( ; )

2

¶


we have
2 ln ( ;)

2
=





µ
1

2
( − )

¶
= − 1

2

and

1() = −
µ
− 1
2

¶
=
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Theorem 9 The binomial proportion b =  is an unbiased efficient estimator of probability  in 

Bernoulli experiments.

Proof. The pdf/pmf is written as

( ; ) =  (1− )1− 

where  = 0 or  = 1 We have
 ln ( ; )


=




− 1− 

1− 


2



We have

1() = 

µ



− 1− 

1− 

¶
= 

µ



+



1− 

¶
= 

µ


µ
1


+

1

1− 

¶¶
=

(1− )

2(1− )2

=
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(1− )

and

(b) ≥ (1− )




But

(



) = ( ) =

(1− )



Multiple parameters

The true unknown parameter vector, θ is the  × 1 vector, θ = (1 2  )0 and bθ= (b1b2 b)0 is
the × 1 estimator vector.
Definition 10 The multidimensional Mean Square Error is the × expected matrix,

(θ) =[(bθ − θ)(bθ − θ)0]
In particular, the sum of diagonal elements, ((θ)) is called the total MSE.

The ( )th element of this matrix is [(b−)(b−)] and the ( )th diagonal element is the standard
MSE of the th component,  = [(b − )

2] For an unbiased estimator, (bθ) = θ and therefore

=(bθ)
and the total MSE turns into the sum of variances, or the total variance.

Definition 11 We say that an estimator bθ1 is no less efficient than an estimator bθ2 if for all true values
of θ we have

1(θ) ≤2(θ)

i.e. the difference between the right- and the left-hand side is a nonnegative definite matrix (the eigenvalues

of the difference are nonnegative), or in other words the MSE of any linear combination of bθ1 is smaller
than the MSE of the linear combination of bθ2. In particular, an estimator bθ is an efficient estimator of θ
if the difference between its MSE and the MSE of another estimator is a nonnegative definite matrix.

Definition 12 Fisher information. Let  have common pdf (;θ) where θ is the unknown -

dimensional parameter vector. The  ×  Fisher information matrix in a single observation is defined

as

I1(θ) = 

∙µ
 ln ( ;θ)

θ

¶µ
 ln ( ;θ)

θ

¶0¸


Theorem 13 The following holds:



µ
 ln ( ;θ)

θ

¶
= 0

and therefore

I1(θ) = 

µ
 ln ( ;θ)

θ

¶
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Theorem 14 Fisher information can be derived from the second derivative

I1(θ) = −
µ
2 ln ( ;θ)

θ2

¶


called the expected Hessian.

Definition 15 Fisher information in a sample of size  is defined as

I(θ) =I1(θ)

Theorem 16 Cramér-Rao lower bound for the covariance matrix. Let 1 2   be iid (random

sample) from a general population with pdf (;θ) and bθ = bθ(1 2  ) be an unbiased estimator. Then
(bθ) ≥ 1


I−11 (θ)

Definition 17 We say that unbiased bθ is efficient for θ if its covariance matrix reaches the Cramér-Rao
lower bound. We say that a component of bθ is efficient if its variance is equal the respective diagonal
element of the Cramér-Rao lower bound.

Theorem 18 The average  of  iid  ∼ N ( 2) with 2 unknown remains efficient for 
Proof. We have

θ2×1 =

∙


2

¸


and
 ln ( ; 2)

θ
=

∙  ln 


 ln 

2

¸
where

ln ( ; 2) = − ln(
√
2)− 1

2
ln(2)− 1
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=

∙
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and again

(b) ≥ 2
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Maximum likelihood estimation

Reading: Section 6.1 of Hardle and Simar.

Let (y;θ) be the joint density of random vector of observations Y×1 with unknown parameter vector
θ×1 The likelihood is defined as

(θ) =(Y;θ)

Note that now we switch our attention from distribution of Y to function of θ where Y (data) is held

fixed/known. In the case of iid we have

(θ) =

Y
=1

(;θ)

where  is the common density of individual observation 

The log-likelihood function is defined as

(θ) = ln(θ) = ln (Y;θ)

and in the iid case

(θ) =

X
=1

ln (;θ)

Definition 19 The maximum likelihood estimator (MLE) of θ is the value bθ = bθ(Y) as a function

of data, that maximizes the likelihood function, or equivalently, the log-likelihood, i.e.bθ = argmin (θ)

In most cases this is equivalent to saying that bθ is the solution of the score equation (the first-order

condition for maximization)


θ
= 0

Requirements:

• Parameters are identifiable: (y;θ1) =(y;θ2) ∀y implies θ1= θ2

• The support of  is independent of θ For example, uniform distribution with unknown upper limit,
R(0 ) does not comply.

Example 20 The proportion of successes to the number of trials in  Bernoulli experiments is the MLE

of the probability, .

Solution. Let 1 2   be the Bernoulli trial outcomes, i.e. Pr( = 1) =  and Pr( = 0) = 1− 

The probability for individual trial  can be written as

(; ) = (1− )1−

Hence the log likelihood function is

() =

X
=1

( ln + (1− ) ln(1− )) =  ln + (−) ln(1− )
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where  =
P

=1  is the number of successes. To find maximum differentiate  and set it zero,




=




− −

1− 
= 0

Solving for  yields b =





This is the maximum point because function

() =  ln + (−) ln(1− )

is a concave function,
2

2
=





µ



− −

1− 

¶
= −

µ


2
+

−

(1− )2

¶
 0

Properties of MLE and hypothesis testing

MLE has optimal asymptotic properties.

Theorem 21 Asymptotic properties of the MLE with iid observations:

1. Consistency: bθ → θ →∞
with probability 1. This implies weak consistency:  lim bθ = θ

2. Asymptotic normality:

√
(bθ − θ)'N (0 I−11 (θ)) →∞

where  is the Fisher information matrix

I1 = 

µ
 ln (;θ)

θ

¶


3. Asymptotic efficiency: if eθ is any other asymptotically normal estimator such that
√

³eθ − θ´'N (0C) →∞

then

C ≥ I−11
or in other words,

(eθ)≥(bθ)

for large  In words, ML estimator reaches the Cramér-Rao lower bound in large sample (asymp-

totically).

Example 22 Establish asymptotic statistical properties of the binomial proportion using the above theorem.

Solution.
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1. Since 1 2   are Bernoulli iid trial outcomes

b =



= b

and therefore b is consistent,

 lim
→∞




= 

2. The binomial proportion is asymptotically normally distributed

√

³

− 
´
'N (0(1− ))

because

1=
1

(1− )


3. b =


is asymptotically efficient, i.e. for every other e such that

√
 (e − )'N (0 ())

we have

 () ≥ (1− )

Likelihood-based Wald confidence intervals

If b is the MLE then the asymptotic double-sided Wald CI for a single parameter  is

b ± 1−2
1p

1()


We infer that in large sample, →∞

Pr

⎛⎝b − 1−2
1q

1(b)

   b + 1−2
1q

1(b)

⎞⎠ ' 1− 

When →∞ the CI shrinks to 

For multiple parameters, the CI for the th component of θ is

b ± 1−2
1√


q
 1 (
b)

where

 1 = (I
−1
1 )

Example 23 10 families report the number of children: 2,0,3,1,3,2,4,1,3,2. (a) Assuming that the number

of children in the family follows a Poisson distribution with parameter  find the MLE (b) Find the 95%

Wald CI for the average number of children in the family. (c) Use simulations to approximate the true

coverage probability using specific values for  and  (d) Use simulations to demonstrate that the coverage

probability improves with . (e) You are visiting a new family and you want to present a postcard to

each child. What is the number of postcards you want to bring so that each child will get a postcard with

confidence probability 075.
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Solution. (a) Find the MLE of  in the Poisson distribution:

Pr( = ;) =


!
−  = 0 1 2 

Therefore if  are the iid counts (observations) the likelihood is the product

() =

Y
=1

Pr(;)

and the log-likelihood is

() =

X
=1

lnPr(;) =

X
=1

( ln− ln!− ) = + ln×
X
=1

 − 

Find the MLE by differentiation and equation to zero,P

=1 


−  = 0

and finally b =  

 x=c(2,0,3,1,3,2,4,1,3,2)

 mean(x)

[1] 2.1

Thus for our example b = 21

(b) Find Fisher information using the fact that () = 

1 = 

µ
 ln Pr( ;)



¶
= 

µ
1


 − 1

¶
=
1

2
 ( ) =



2
=
1




Find 95% Wald CI

b ± 1−2
1q

1(b)

= 21± 196× 1q
10b

= 21± 196×
sb

10
= 21± 196×

r
21

10

= 21± 09

Answer: the 95% CI of the average number of children in the family is from 1.2 to 3.

(c)

ciPOIS=function(job=1,lambda.true=2,n=10,alpha=.05,nSim=10000)

{

dump("ciPOIS","c:\\M7019\\ciPOIS.r")
Z1a=qnorm(1-alpha/2)

if(job==1)

{

cover=0

for(isim in 1:nSim)
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{

Y=rpois(n,lambda=lambda.true)

l.hat=mean(Y)

lowCI=l.hat-Z1a*sqrt(l.hat/n)

upCI=l.hat+Z1a*sqrt(l.hat/n)

if(lambda.truelowCI & lambda.trueupCI) cover=cover+1

}

return(paste("Cover. prob =",cover/nSim))

}

if(job==2)

{

nseq=3:15

LN=length(nseq)

covn=rep(NA,LN)

for(i in 1:LN)

{

cover=0

for(isim in 1:nSim)

{

Y=rpois(nseq[i],lambda=lambda.true)

l.hat=mean(Y)

lowCI=l.hat-Z1a*sqrt(l.hat/nseq[i])

upCI=l.hat+Z1a*sqrt(l.hat/nseq[i])

if(lambda.truelowCI & lambda.trueupCI) cover=cover+1

}

covn[i]=cover/nSim

}

plot(nseq,covn,ylim=c(.8,1),type="o",xlab="n",ylab="Probability",

main=paste("Simulation-based coverage probability of Poisson true lambda =",lambda.true))

segments(0,1-alpha,max(nseq),1-alpha,col=2)

}

}

 ciPOIS()

[1] "Cover. prob = 0.9501"

(d)
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(e) Given  = b = 21 find    as the quantile qpois(p=0.75,lambda=2.1)=3.
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Maximum likelihood-based hypothesis testing

Reading: Sections 6.3-6.5 of Hogg et al. and Section 7.1 of Hardle and Simar.

Let {  = 1 2  } be an iid sample from a general population with the density (;θ) where θ

is the × 1 vector of parameters to be estimated using the sample. Suppose that the null hypothesis is
formulated as

0 : 1 = 10 (1)

with the alternative  : 1 6= 10, where 1 is the first component of vector θ and 10 is a specified

number. The remaining − 1 components θ2 = (2 3  ) may be any; sometimes they are referred
to as ’nuisance’ parameters, so that θ =(10θ2)

0.0.1 Wald test

From the maximum likelihood theory we know that

√
(bθ − θ) 'N

¡
0 I−11 (θ

¢
)

where I(θ) is the × Fisher information matrix from the individual observation data, namely,

I1(θ) = 

∙µ
 ln (y;θ)

θ

¶µ
 ln (y;θ)

θ

¶0¸
(2)

= 

µ
 ln (y;θ)

θ

¶
(3)

= −
µ
2 ln (y;θ)

θ2

¶
 (4)

The approximate variance of b1 is the (1 1)th element of matrix (bI1)−1 where bI1 = bI1(bθ)

(b1) ' h(bI1)−1i
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The key observation is that under the null hypothesis

 =
b1 − 10q
(b1) ' N (0 1) →∞

Therefore, if ||  Φ−1(1−2) where  is the significance level, then we reject the null hypothesis ( is

the error of rejecting 0 when it is actually true). The p-value = 2(1 − Φ(||)) Usually we reject 0 if

the p-value  0.05.

Example 24 Boston shooting. 35 days of shooting was reported in Boston last year. The national

rate is 30 shooting per year in a city like Boston. Test the hypothesis that the difference is due to natural

variation.

Solution. The probability that a shooting occurs on a particular day in a US city is 0 = 30365 =

00822 Let  be the probability of shooting in Boston. The null hypothesis is 0 :  = 0 First, we

derive the log-likelihood and the MLE for  (note that the notation  is used instead of the above )The

number of shooting is the sum of iid Bernoulli experiments,  ∈ {0 1} for days  = 1 2   = 365 with
Pr( = 1) =  (sometimes  is referred to as binomial probability). The likelihood for individual  can be

11



written as (1− )1− and the for all  is written as () =
Y
=1

1(1− )1− The log-likelihood takes

the form

() =

X
=1

[ ln + (1− ) ln(1− )]

The MLE for  turns the score equation to zero,  = 0 Solving




=

X
=1

[
−1 − (1− )(1− )−1] = 0

for  yields

b =
1



X
=1

 =





where  is the number of shooting days over the year. This means that the estimate for Boston isb = 35365 = 00959 Question: is the difference between 00959 and 00822 statistically significant? In

order to apply the Wald test we need to compute the Fisher information matrix (in our case a scalar). We

use three formulas and show that they all give the same result.

1. Expected squared. Since in the previous notation (; ) = (1 − )1− we have ln (; ) =
 ln + (1− ) ln(1− ) and

 ln 


=




− 1− 

1− 

we have



µ
 ln 



¶2
= 

 2

2
− 2 (1− )

(1− )
+

(1− )2

(1− )2


But

2 = 

[ (1−  )] = ( )−( 2) = 0

(1−  )2 = 1− 

that gives



µ
 ln 



¶2
=



2
+
(1− )

(1− )2
=
1


+

1

1− 

=
1

(1− )

2. Variance. We have



µ
 ln 



¶
= 

µ


(1− )
− 1

1− 

¶
= 

µ


(1− )

¶
=

( )

2(1− )2
=

(1− )

2(1− )2
=

1

(1− )


3. Expected second derivative. We have

2 ln 

2
= −

2
− 1− 

(1− )2

12



so that



µ
2 ln 

2

¶
= − 

2
− 1− 

(1− )2
= − 1

(1− )

All three equations give the same result, the Fisher information matrix of the binomial probability is

1() =
1

(1− )


The Z-score test is

 =
√

b − 0p
0(1− 0)

For our data

 =
√
365

00959− 00822p
00822× (1− 00822) = 0953

with the p-value 2*(1-pnorm(0.953))=0.34. Thus we cannot reject the hypothesis that the Boston rate

of shooting is at the national level. The difference is due to natural variation.

Sometimes the information matrix in the Z-test is evaluated at the ML estimate. Then

 =
√


b − 0pb0(1− b0)
=
√
365

00959− 00822p
00959× (1− 00959) = 0889

with the p-value = 0.37 and leads to the same conclusion.

Homework 4

1. Observations {(1 2)  = 1  } are independently drawn from a population with the bivariate

density is (1 2;1 2) = 12
−11−22 (a) Derive the Fisher information matrix in the entire

sample. (b) Find the MLE for 1 and 2 (c) Find the asymptotic standard error for b1 and b2

(d) Test the hypothesis that 1 = 2 (e) Four pairs of similar houses in area A and B have been sold

after being on the real estate market for (108,87), (23,35), (210,120), (14,23) days. Assuming that

the time follows the above distribution, test the hypothesis that the sale rates in the two areas are

the same (compute the -value).

2. Is the average efficient for  in the Poisson distribution? Show the math..

3. The annual number of sunny days in Hanover is 198. There were 12 sunny days in March. Test the

null hypothesis that March is a typical month. Show the math.
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