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[DF] Abstract Algebra (3rd ed.), by S. Dummit and R. M. Foote.

Effective syllabus

O. Preliminaries - 2 lectures

O.1 Binary relations
O.2 Basic arithmetic

I. Groups - 15 lectures

I.1. Generalities
I.2. Examples of groups
I.3. Morphisms and subgroups
I.4. Cyclic groups
I.5. Groups presented by generators and relations
I.6. Quotient groups
I.7. The First Isomorphism Theorem
I.8. Lagrange’s Theorem
I.9. The alternating group Sn

I.10. Group actions
I.11. Composition series and Hölder’s Program
I.12. Sylow’s Theorems
I.13. The Fundamental Theorem of finitely generated abelian groups
I.14. Direct and semi-direct products

II. Rings - 10 lectures

II.1. Generalities
II.2. Properties of ideals
II.3. Euclidean domains
II.4. Principal ideal domains
II.5. Unique factorization domains
II.6. Rings of fractions
II.7. Polynomial rings
II.8. Field extensions

III. Introduction to representation theory - 1 lecture
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Week 1

Lecture 1. [DF, §0.1-§0.3]
Equivalence relations: definition and examples. Equivalence classes, representatives. Cor-
respondence between equivalence relations and partitions.
Basic arithmetic vocabulary, relatively prime numbers. Congruence modulo n.

Lecture 2. [DF, §0.1-§0.3]
Review of Euclidean division, the Euclidean Algorithm.
Addition and multiplication are well-defined operations in Z/nZ.
Characterization of invertible elements: (Z/nZ)× = {ā , a ∧ n = 1}.

Lecture 3. [DF, §1.1-§1.4]
Composition laws (binary operationa), associativity, commutativity.
Groups: definition, first examples. Abelian groups are denoted additively.
General properties: uniqueness of the identity and of the inverse, inverse of a composition.
Cancellation laws, conjugation.
Fields: definition, examples (Q, R, C, Z/pZ, p prime). Matrix groups: GL(2,F), SL(2, F ).

Week 2

Lecture 4. [DF, §1.2]
Dihedral groups: geometric definition, enumeration (#D2n = 2n). Table of a group.
Generators and relations: examples of Z/nZ and D2n = 〈r, s | s2 = 1 , rn = 1 , rs = sr−1〉.

Lecture 5. [DF, §1.3-§1.6]
Symmetric groups Sn: permutations, cycles. Cycles with disjoint supports commute.
Canonical decomposition: every permutation can be uniquely written as a (commuting)
product of cycles with disjoint supports. Cycle Decomposition Algorithm. Application to
the determination of the order of a permutation.
Group homomorphisms: definition, examples. Morphisms map identity to identity and
inverse to inverse. Isomorphism. The isomorphic image of an abelian group is abelian.
Isomorphisms preserve the order of elements.

Problem Session 1. A permutation has order 2 if and only if its canonical decomposition
only contains permutations. Presentation of Z/nZ.

Lecture 6. [DF, §2.1-§2.2]
Subgroups: definition, examples, simple groups, the Subgroup Criterion.
Subgroups of SL(2,R) isomorphic to {z ∈ C , |z| = 1}, R×+, and R.
Images and kernels of homomorphims are subgroups (generalizing the case of linear maps
between vector spaces). Characterization of injectivity via the kernel.

Week 3

Lecture 7. [DF, §2.3]
Cyclic groups: classification by the cardinality, characterization of generators, subgroups.



Lecture 8. [DF, §2.4 - §3.1]
Group 〈A〉 generated by a subset A of a group G: definition as minimal subgroup contain-
ing A, characterisation by the intersections of all subgroups containing A, general form of
the elements.
Equivalence relation ∼H on G, with H < G. Left cosets: gH is the class of g ∈ G for
this relation. Composition of cosets g1H ? g2H = g1 · g2H is well defined if and only if
gH = Hg for all g ∈ G. Normal subgroups.

Problem Session 2. A subgroup H of Q such that x ∈ H ⇒ 1
x
∈ H must be {0} or Q.

Lecture 9. [DF, §3.1 - §3.2 - §3.3]
Characterizations of normal subgroups, quotients. Normal subgroups are exactly kernels
of homomorphisms. The First Isomorphism Theorem. Application: R/2πZ ' T.

Week 4

Problem Session 3. Subgroups of µn = {z ∈ C , zn = 1}. Subgroups of D2n generated
by various subsets. SL(n, F ) � GL(n, F ) and GL(n, F )/SL(n, F ) ' F×.

Lecture 10. [DF, §3.2]
Lagrange’s Theorem and corollaries: the order of an element divides the order of the group,
a group with prime order is cyclic. The index of a subgroup. Finite case: [G : H] = #G

#H
,

examples. A subgroup with index 2 is normal. There is no general converse for Lagrange’s
Theorem: the tetrahedron group, of order 12, as no subgroup of order 6.

Lecture 11. [DF, §3.5]
Cycles and transpositions generate Sn; there is no uniqueness in the way a given permu-
tation decomposes into transpositions. Action of σ ∈ Sn on ∆ =

∏
1≤i<j≤n

(Xi −Xj). Defi-

nition of the signature: σ ·∆ = ε(σ)∆. This defines a homomorphism ε : Sn −→ {−1, 1},
whose kernel is called the alternating group An with cardinality n!

2
. Transpositions have

signature −1, notion of even and odd transposition.

Week 5

Lecture 12. [DF, §1.7,§4.1]
Action of a group on a set: definition and examples. The kernel of G y X is the kernel
of the homomorphism g 7→ σg, where σg(x) = g · x; faithful actions.
The stabilizer StabG(x) of an element x ∈ X is a subgroup of G with index the cardinality
of the orbit of x. Transitive actions.

Lecture 13. [DF, §4.2]
Any group acts on itself by left multiplication. Example of Klein’s group V4.
More generally, if H < G, the action Gy G/H given by left multiplication is transitive.
The stabilizer of 1GH is H, the kernel is N =

⋂
g∈G gHg

−1 and N is the largest normal
subgroup of G contained in H.
Corollary (Cayley): every finite group is isomorphic to a subgroup of Sn for some n.



Lecture 14. [DF, §4.3]
Equivariant maps and isomorphisms in the category of G-sets. Centralizers and normal-
izers, action by conjugation. Examples: similar matrices, equivalences classes and rank.
The Class Equation and applications: a group of order pα with p prime has non-trivial
center. A group of order p2 with p prime is abelian, isomorphic to Z/p2Z or Z/pZ×Z/pZ.

Week 6

Lecture 15. [DF, §3.4]
Cauchy’s Theorem: if G is a finite group and p prime divides #G, then G contains
an element (hence a subgroup) of order p. Proof in the abelian case. Simple groups,
composition series, Jordan-Hölder Theorem. Hölder’s classification program.
Feit-Thompson’s Theorem: simple groups of odd order are cyclic.

Lecture 16. [DF, §4.5, §5.2, §5.4]
Maximal p-subgroups: Sylow’s theorems. Structure of finitely generated abelian groups.
Structure of compactly generated abelian groups. Characterization of direct products.
Structure of the group H1H2 when H1 �G, H2 < G and H1 ∩H2 = {1}.

Lecture 17. [DF, §5.5]
Semi-direct products: general case. Application: if p and q are prime numbers and
p|(q − 1), there exists a non-abelian group of order pq.

Lecture 18. [DF, §7.1]
Rings: definition, basic examples. Fields, division rings, example of the quaternions H.
Rings of functions with values in a ring. Zero divisors and units.

Week 7

Lecture 19. [DF, §7.1, §7.2]
Integral domains. Cancellation laws. A finite integral domain with identity is a field.
Wedderburn’s Theorem: a finite division ring is abelian, hence a field.
Subgrings and ring morphisms. The kernel of a ring homomorphism is absorbent.
Ideals. If I is an ideal in A, the quotient group A/I is a ring for the multiplication
(a+ I)(b+ I) = ab+ I. Natural projection A −→ A/I, First Isomorphism Theorem.

Lecture 20. [DF, §7.1, §7.4]
Finitely supported sequences in a ring: polynomials.
Ideal generated by a subset: definition, characterization, commutative case.
Principal ideals. b ∈ (a)⇔ a|b⇔ (b) ⊂ (a). If I is an ideal in A, then I = A if and only
if I contains a unit. A commutative ring with unit is a field if and only if has no other
ideals than {0} and A.

Lecture 21. [DF, §7.4]
Maximal ideals; I is maximal if and only if A/I is a field. Examples: (X) is not maximal
in Z[X], the ideal generated by 2 and X is. Prime ideals in a commutative ring.



Week 8

Lecture 22. [DF, §8.1]
Euclidean domains, division algorithm. Examples: Z, R[X], fields. In a Euclidean domain,
every ideal is principal. Example: Z[X] carries no Euclidean division.
Multiples, divisors, notion of g.c.d. Uniqueness up to a unit. The division algorithm
allows to compute a g.c.d., Bézout relation.
More about polynomial rings: if A is a commutative ring with identity and I is an ideal,
then (I) = I[X] and A[X]/I[X] ' A/I[X]. Polynomials in several variables.

Lecture 23. [DF, §8.2]
A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Euclidean rings are PIDs, but Z
[
1+i
√
19

2

]
is a PID that is not Euclidean. For a and b, in

a PID, any generator of (a, b) is a g.c.d. It is unique up to multiplication by a unit and
satisfies a Bézout relation. In a PID, every prime ideal is maximal.
Corollary: if A is a commutative ring, then A[X] is a PID ⇒ A is a field. Conversely, if
A is a field, then A[X] is a Euclidean domain hence a PID.

Fun: group rings and convolution.

Lecture 24. [DF, §8.3]
Notice that in Z, an alternate way to compute the g.c.d. of two elements is to compare
their prime factors decompositions. Irreducibles and primes in an integral domain, asso-
ciate elements. General fact: prime ⇒ irreducible. The converse does not hold in Z[i

√
5]

as 3 is irreducible but not prime: 32 = (2+ i
√

5)(2− i
√

5). In a PID, prime⇔ irreducible.
Unique factorization domains (UFD): definition, examples. In a UFD, prime ⇔ irre-
ducible. Computation of g.c.d.’s in a UFD.

Week 9

Lecture 25. [DF, §8.3, §7.5]
Every principal ideal domain has the unique factorization property.
Rings of fractions: general construction and universal property.
Fields of fractions: examples of Q and F (X).

Lecture 26. [DF, §9.3]
Given a ring A with field of fractions F can results obtained in F [X] be used in A[X]?
Gauss’ Lemma: if A is a UFD and P is reducible in F [X], then it is reducible in A[X].
Corollary: if A is a UFD and the coefficients of P have g.c.d. 1, then P is irreducible in
F [X] if and only if it is irreducible in A[X]. Transfer theorem: A UFD ⇔ A[X] UFD.
Corollary: if A is a UFD, so is A[X1, . . . , Xn].

Problem session 4. Quotients of A[X], nilpotent elements.

Lecture 27. [DF, §13.1]
Two constructions of C: as a subring of M2(R) and as R[X]/(X2 + 1).
Fields extensions, degree. If F is a field and P ∈ F [X] is irreducible, then F [X]/(P ) is an
extension of degree deg(P ) of F in which P has a root. Conversely, if K is an extension
of F in which P has a root α, then F (α) ' F [X]/(P ).



Week 10

Lecture 28. Introduction to representation theory.
Fun: definitions and examples of representations (permutations, left regular).
Irreducibles, Schur’s Lemma. Fourier analysis on abelian groups, projective representa-
tions of SO(3), representations of SU(2) and spin of particles.
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