Math 76 - Homework 1 Due Friday, July 7

1. Use MATLAB to solve the linear system

$$3x_1 + 2x_2 + x_3 = 11$$

 $2x_1 + 3x_2 + x_3 = 13$
 $x_1 + x_2 + 4x_3 = 12$

using two different methods.

2. We say a $n \times n$ matrix $A = (a_{ij})_{n \times n}$ is symmetric when for all $1 \le i, j \le n$,

$$a_{ij} = a_{ji}$$
.

Write a MATLAB function that will test if a matrix is symmetric or not. The function will return the number "1" if the matrix is symmetric and "0" if it is not.

3. The *Fibonacci sequence* is defined by

$$F_n = \begin{cases} 1, & n = 1; \\ 1, & n = 2; \\ F_{n-1} + F_{n-2}, & n \ge 3. \end{cases}$$

- (a) Write a script which calculates F_m . Use a for loop.
- (b) Write a script which finds N^* such that $F_{N^*} < m$ and $F_{N^*+1} \ge m$. Use a while loop.
- (c) Write a script which finds the sum of the first *m* Fibonacci numbers $F_n, 1 \le n \le m$, for which F_n is divisible by either 2 or 5, that is

$$\sum_{n=1}^{m} \begin{cases} F_n, & \text{if divisible by 2 or 5;} \\ 0, & \text{otherwise.} \end{cases}$$

You should find the MATLAB built-in function mod helpful.

(The m above is a input value given by the user.)

4. Consider the second-order ordinary differential equation

$$y''(t) + y(t) = 0.$$

(a) Solve this ODE analytically using initial conditions y(0) = 2 and y'(0) = 1.

- (b) Rewrite this ODE as a system of two first-order differential equations.
- (c) Write a function in MATLAB that represents the system of first-order ODEs.
- (d) Using the same initial conditions, solve the system numerically over the interval [0, 10]. How many steps were used? Generate a plot with the numerical and analytic solutions to the second-order ODE versus time.
- (e) Compare the analytic solution to the numerical solution. Generate plots of the absolute and relative errors. What is the error at t = 10?
- 5. Recall that a first-order system of linear differential equations with constant coefficients may be expressed in matrix notation as

$$\frac{dY}{dt} = AY,$$

where Y(t) is a vector-valued function and A is a square matrix (with constant coefficients). Moreover, if λ_1 is an eigenvalue for A (i.e. $\det(A - \lambda_1 I) = 0$) with associated eigenvector V_1 (i.e. $AV_1 = \lambda_1 V_1$), then

$$Y(t) = e^{\lambda_1 t} V_1$$

is a solution of the equation. We shall now use MATLAB to compute the eigenvalues and eigenvectors of a given square matrix A, and therefore the analytic solutions of the equation. Consider the system of equations

$$\begin{cases} \frac{dx}{dt} = -x - 4y, \\ \frac{dy}{dt} = 3x - 2y. \end{cases}$$

- (a) Use MATLAB to determine the eigenvalues and eigenvectors of the associated matrix.
- (b) Use (a) to find two linearly-independent solutions and the general solution of the equation.
- (c) Use (b) to find the solution satisfying the initial conditions x(0) = 1 and y(0) = -1.
- (d) Compare the problem with the last one. Does the method offered here work for a general ODE problem? Why or why not?
- 6. Consider the dataset

Year	Price
1	8.3
2	8.3
3	9.5
4	10.5
6	8
7	8.5
8	8.4
9	8.6
10	9.1

Notice that a price for year 5 is missing.

- (a) Linearly interpolate between years 4 and 6 to approximate the price for year 5. Plot the data with the approximation.
- (b) Fit a polynomial to the entire dataset to find the corresponding price for year 5. Decide which order polynomial fits best. Plot the data with the model.
- (c) Explain the differences in these approaches.