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A new SAR signal processing technique based on compressed sensing is proposed for autofocused image
reconstruction on subsampled raw SAR data. It is shown that, if the residual phase error after INS/GPS
corrected platform motion is captured in the signal model, then the optimal autofocused image formation
can be formulated as a sparse reconstruction problem. To further improve image quality, the total
variation of the reconstruction is used as a penalty term. In order to demonstrate the performance of
the proposed technique in wide-band SAR systems, the measurements used in the reconstruction are
formed by a new under-sampling pattern that can be easily implemented in practice by using slower
rate A/D converters. Under a variety of metrics for the reconstruction quality, it is demonstrated that,
even at high under-sampling ratios, the proposed technique provides reconstruction quality comparable
to that obtained by the classical techniques which require full-band data without any under-sampling.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Synthetic aperture radar (SAR) systems provide high resolution
images of terrain reflectivity. Typically, an airborne or spaceborne
platform carries a monostatic radar system on a straight flight
path, while the radar transmits and receives echoes from the area
of interest. The received and digitized radar returns are coherently
processed to obtain significantly higher resolution in azimuth di-
rection that would otherwise necessitate usage of a large aperture
antenna.

Because of their high resolving power, SAR systems are widely
used in ground surveillance, terrain mapping and environmental
monitoring applications. In military applications, SAR is primarily
used in intelligence, surveillance and reconnaissance (ISR) mis-
sions. Increased demand on high-precision ISR outputs requires
sub-meter or even higher resolutions from SAR images. High res-
olution SAR systems are becoming competitive alternatives and
supplements of EO/IR cameras for ISR applications. Also, the ca-
pability to operate in adverse weather conditions makes them very
appealing for surveillance applications where performance of EO/IR
cameras heavily depends on atmospheric conditions.

In a typical digital SAR image reconstruction processing chain,
the received analog signal is first down-converted and sampled
using an A/D converter without any aliasing (Fig. 1). The sam-
pling rate of the A/D converter depends on the bandwidth of the
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SAR system, which determines the range resolution. The A/D con-
verted signal is written in memory for further processing. The size
of the required memory is derived from the data rate of the A/D
converter and the processing power of the SAR image formation
processor. The stored data is either processed in real-time by an
on-board processor or transferred by a data link to a ground sta-
tion where the image formation takes place.

SAR systems need accurate distance and angle information be-
tween the SAR platform and the reference point in the terrain of
interest in order to establish the synthetic aperture precisely. How-
ever, due to the limited accuracy of navigational sensors, there are
always some residual errors left in the estimation of the actual
flight path, especially in airborne SAR applications. These uncom-
pensated platform motion errors create uncertainties in distance
and angle measurements which result in phase errors in the re-
ceived SAR signal. Residual phase errors are the main cause of
the degradations in high resolution SAR images, limiting achiev-
able performance especially in the azimuth direction. These er-
rors, depending on their nature, can cause geometric distortions,
loss of resolution/contrast, decrease in SNR and can even generate
spurious targets [1]. Autofocus algorithms have been proposed to
overcome these phase error related degradations. There are several
autofocus techniques [1–8] to estimate and correct phase errors by
using dedicated algorithms on raw SAR data. These algorithms can
be applied on a wide range of SAR images successfully. Once a re-
liable estimate for the phase error is available, the raw SAR data is
corrected to obtain highly improved reconstructions.

Modern SAR systems have higher range and azimuth reso-
lutions which necessitate large bandwidths even in excess of
500 MHz. These systems typically require higher operational
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Fig. 1. Typical SAR image formation process.
frequencies because the desired bandwidths of the RF and antenna
subsystems. Higher operational frequencies increase the required
accuracy level of motion compensation techniques. If not com-
pensated, these motion errors create greater phase errors. As a
result, higher operational frequencies create significant challenges
for autofocus techniques. Furthermore, classical image reconstruc-
tion techniques for higher frequency SAR systems require full band,
fast A/D converters to digitize the received signal, resulting in
larger onboard storage systems. In addition, if the raw data is to
be transmitted to another platform for processing, transmission of
full band data requires more time or bandwidth.

Recent developments in compressed sensing (CS) techniques
bring innovations to the SAR image reconstruction area. Unlike
classical SAR image processing techniques, CS methods can oper-
ate on downsampled data to reconstruct SAR images where targets
of interest are sparse in a certain transform domain. CS SAR im-
age reconstruction techniques proposed in the literature model the
image forming process as a sparse inverse reconstruction prob-
lem. In [9,10], the inverse problem is formulated as a convex l1
norm minimization and its solution is obtained by linear program-
ming or approximated by greedy pursuit algorithms. The l1 norm
minimization term in the cost function of the convex minimiza-
tion problem enforces sparsity. A similar approach is also used
in [11] for sparse reconstruction of SAR images which uses the ba-
sis pursuit algorithm for the solution of the problem and demon-
strates the super resolution property. Several computational tools
are available in the literature [12,13] which can be applied to l1
norm minimization problems. In [14], the cost function with l1
term is solved by finding roots on the Pareto curve [12]. But they
also modify the reconstruction problem by adding a total variation
penalty into the cost function to reduce the speckle noise effects,
which requires development of a dedicated solver. In Fourier imag-
ing applications, the effect of p-norm regularization under ampli-
tude and phase errors is studied in [15], where it is stated that
for p < 2 gradient descent optimizations reduce amplitude and
phase irregularities. In [16] phase errors are accounted as SAR ob-
servation model errors and an iterative sparsity-driven method for
simultaneous SAR imaging and autofocus is proposed. A coordi-
nate descent technique is used to minimize the cost function. This
method uses the fully sampled raw data to reconstruct the SAR
image. Similarly, joint formulation of SAR reconstruction and aut-
ofocus has been proposed in [17], where only 50% of the Nyquist
rate samples are used for the processing. There are also several
other sparse SAR image reconstruction algorithms that are recently
reviewed and compared in [18].

In this work, a new CS based sparse SAR image reconstruction
technique is proposed. The proposed technique also performs the
autofocus operation; hence it is possible to conduct image recon-
struction and optimal correction of phase errors simultaneously.
The proposed technique models the phase error as part of the data
acquisition and then employs a CS based approach for image re-
construction and optimal phase error correction. The non-linear
conjugate gradient descent algorithm is used to minimize the cost
function. In addition to phase error correction, the proposed tech-
nique also incorporates total variation (TV) penalty into the cost
function; hence it is called the CS–PE–TV technique. Typical CS
applications rely on l1 norm minimization approaches. However,
adding TV penalty into the cost function of the SAR image recon-
struction improves the quality of the output image by suppressing
intensity variations caused by speckle noise, without significant ef-
fect on boundaries [14]. As a novel way of integrating both TV
penalty and phase error into the cost function of the sparse SAR
image reconstruction problem, the proposed technique improves
the overall reconstruction quality.

To facilitate practical implementation, a new under-sampling
methodology is presented in this study. It reduces the A/D con-
version rate to obtain the required samples for CS SAR image re-
construction, allowing us to overcome the hardware limitations of
wide band SAR applications.

The rest of the paper is organized as follows. CS is briefly re-
viewed in Section 2. Section 3 includes SAR data acquisition ge-
ometry and signal model. Section 4 describes the proposed under-
sampling methodology. The proposed technique for simultaneous
reconstruction and autofocus sparse SAR images is detailed in Sec-
tion 5. Section 6 provides reconstruction examples and results.
Section 7 presents the conclusions. Details of the gradient com-
putation are given in Appendix A.

2. Compressed sensing: a short review

Compressed sensing (CS) is a relatively new signal processing
technique [19,20]. It can provide reliable reconstruction of a sig-
nal from its lower than Nyquist rate samples. In order to apply
CS, the signal should have a sparse representation in a known ba-
sis. Since sparsity is encountered in many natural signals, CS has
found diverse applications. Consider the following linear measure-
ment model:

y = Gx, (1)

where G is the measurement matrix, y is the measured signal and
x is the unknown signal which can be represented sparsely in a
known basis:

x = Ψα, (2)

where columns of Ψ are basis vectors and α is the vector of sparse
representation coefficients. Then Eq. (1) can be written as,

y = Aα, (3)

where A = GΨ . The sparse solution for the linear model of Eq. (1)
is found by solving the following l0 norm minimization problem,

min‖α‖0 s.t. y = Aα, (4)

where ‖α‖0 describes the l0 norm, the number of non-zero entries
in α. The solution to the problem in Eq. (4) is combinatorial in na-
ture with prohibitive computational load in practical applications.
Convex relaxation of the l0 problem to the following l1 problem,

min‖α‖1 s.t. y = Aα, (5)

enables use of efficient programming tools for solution such as lin-
ear programming. Besides, many algorithms [21–28] to solve the
convex l1 norm minimization problems are proposed in the lit-
erature. They use various techniques including second order cone
programming (SOCP), gradient descent approaches, greedy search
algorithms, weighted least squares and Bregman iteration.

Uniqueness of the sparse solution of Eq. (4) is guaranteed when
spark(A)/2 � ‖α‖0 is satisfied [29], where spark of a matrix A is
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defined as the size of the smallest linearly dependent column sub-
set. The spark(A) not only controls uniqueness in Eq. (4) but also
controls it in Eq. (5). No sparsity bound implies the equivalence of
Eq. (4) and Eq. (5) unless spark(A)/2 � ‖α‖0. A stronger condition
than the spark of a matrix is the restricted isometry property (RIP)
which is defined as,

(1 − δs)‖α‖2 � ‖Aα‖2 � (1 + δs)‖α‖2

s.t. δs > 0, ‖α‖0 < s, (6)

where isometry constant δs satisfies, 0 � δs < 1 [30]. RIP provides
an upper bound for the sparsity of a signal so that its energy is
preserved by a given amount through the transformation by the
operator. It is proven that Eq. (4) and Eq. (5) provide the same so-
lution if α is sparse and A holds RIP [30,31]. Unfortunately, even
for moderate dimensional operators, finding RIP of a given operator
is computationally impractical. However, a few classes of matri-
ces are shown to hold RIP for almost certainly [20,30,31] which
include random matrices with i.i.d. entries, Fourier ensemble ma-
trices, and general orthogonal measurement ensembles. Note that
the general orthogonal measurement ensembles can be generated
by randomly selecting n rows from m by m orthonormal matrix
and re-normalizing the columns [30].

CS finds application in diverse fields thanks to its strong theo-
retical performance bounds. E/O and medical imaging applications
benefit significantly from CS techniques due to the well known
bases that are used to sparsely represent the imaged scene [32].
Applications of CS to radar and SAR are also investigated [9–11,
14,18,33–36]. The main difficulty in applying CS to SAR imaging is
finding an appropriate basis for the sparse representation of SAR
images. Due to their speckle noise content, SAR images of terrain
cannot be sparsely represented in known domains. Speckle noise
is caused by the coherent contributions of multiple distributed re-
flecting objects in a resolution bin [37]; and creates difficulties in
finding sparse basis for SAR images. However, for radar scenes with
highly reflective man-made objects, either wavelet or standard ba-
sis vectors can be chosen for the sparse representation of the scene
reflectivity distribution [38].

3. SAR data acquisition geometry

SAR is an active sensor system which transmits signals with
large time-bandwidth product and coherently processes received
signals along the flight path of the sensor platform. There are well-
known measurement models relating the received ground echo to
the ground reflectance for various operational modes of the SAR
system and imaging geometries [1,39]. Although the proposed CS-
based sparse SAR reconstruction technique can be applied to other
modes of operation, in this work we will focus on its application to
spotlight mode SAR. In spotlight mode operation, the radar travels
through a straight path while pointing the beam axis towards the
scene center as shown in Fig. 2.

In classical SAR image reconstruction techniques, range resolu-
tion of the image depends on the bandwidth of the transmitted
waveform [1,39]. Azimuth resolution is inversely proportional to
the synthetic aperture length, which is related to the total obser-
vation angle in the spotlight mode SAR [1,39]. Assume the real
part of a linear FM chirp waveform is transmitted at each azimuth
position,

s(t) =
{

e j(ω0t+at2), |t|� T
2

0, otherwise
(7)

where ω0 is the RF carrier frequency and 2a is the FM rate. Each
azimuth position corresponds to a different look angle, θ , from the
sensor platform to the center of the imaged scene. At each look
Fig. 2. Spotlight mode SAR imaging geometry.

angle, the demodulated received signal (phase history) depends on
the reflectivity as [1],

rθ (t) =
∫∫

z2
1+z2

2�L

x(z1, z2)exp
{− jΩ(t)

(
z1 cos(θ)

+ z2 sin(θ)
)}

dz1 dz2, (8)

where L is the spatial extent of the ground patch and Ω(t) =
(2/c)(ω0 +2a(t − (2Rθ /c))) is the radial spatial frequency. By using
the projection slice theorem, the phase history can also be written
as the Fourier transform of the projection of the ground reflectivity
at angle θ [40],

rθ (t) =
∫

|u|�L

yθ (u)exp
{− jΩ(t)u

}
du. (9)

The projection of the ground reflectivity at angle θ is called the
range profile. By combining Eq. (8) and Eq. (9) and discretizing
the integrals in Eq. (8) using their uniform Riemann sum approx-
imations, the discrete vector relation between the range profile at
angle θ and the reflectivity of the ground patch can be written
as [41],

yθ = F −1
θ Cθ x = Gθ x, (10)

where F −1
θ is the inverse discrete Fourier transform matrix and Cθ

is the discrete approximation to the observation kernel at angle θ

given in Eq. (8). Thus Gθ becomes the complex valued discrete SAR
projection operator at angle θ relating the measured range profiles
to the unknown reflectivities.

The received signal at each azimuth position of transmission as
given in Eq. (10) is sampled by a high speed A/D converter. The
total received signal formed through the synthetic aperture can be
written in vector form by appending the range samples taken from
an azimuth location to those taken from the next azimuth location.
The reflectivity matrix can also be written in vector form in the
same manner as stacking columns in increased order. The relation
between the received signal vector and the reflectivity vector can
be written as [41],

y = Gx + w, (11)

where y is the received signal (the measurement vector), G is the
complex valued discrete SAR projection operator matrix, x is the
reflectivity vector and w is the circularly symmetric white Gaus-
sian noise vector. As indicated before, uncompensated platform
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motion errors, especially in the range direction, are the main cause
of phase errors in the received signal. Phase errors can be inserted
into the signal model as an exponential factor [39]:

yφ = Φ y = ΦGx + w. (12)

Here, Φ is a diagonal matrix representing phase errors for every
measurement taken from the imaged scene as given below,

Φ = diag{φ} =

⎛
⎜⎜⎝

e jφ1

e jφ2

. . .

e jφm

⎞
⎟⎟⎠ , (13)

where φ = [e jφ1 e jφ2 · · · e jφm ]T and m is the total number of mea-
surements. Hence, the phase error multiplied measurement vector
yφ reflects the effects of uncompensated platform motion errors.
Generally phase errors do not depend on the range axis. Therefore,
they are assumed to be the same for all the data corresponding to
an azimuth location [39],⎛
⎜⎜⎝

yφ1

yφ2

...

yφN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e jφ1

e jφ2

. . .

e jφN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G1
G2
...

G N

⎞
⎟⎟⎠ x + w, (14)

where yφi is the partition of the measurement vector yφ which
contains all the range points corresponding to the azimuth point i,
φi is the phase error at the azimuth point i, Gi is the partition of
the matrix G corresponding to the range bins of the azimuth point
i and N is the total number of azimuth points.

4. SAR raw data sampling for CS

CS techniques recover an S-sparse signal of length N with high
probability if the measurement matrix satisfies RIP and the num-
ber of measurements are greater than O (S log(N/S)) [42]. Recon-
structing a sparse signal with fewer measurements than its cor-
responding Nyquist rate helps reduce the sampling rate and the
amount of raw data to be processed. Reduced sampling rates allow
usage of slower A/D converters in SAR systems. Furthermore the
reduced amount of raw data reduces the memory requirements of
the system and the necessary data link bandwidth capacity if the
raw data is transferred to a ground segment for image reconstruc-
tion.

Using lower rate A/D conversion in wide bandwidth SAR has
the same effect as downsampling the original data. However, regu-
lar downsampling does not generate measurement matrices with
RIP [46]. RIP can be achieved by randomly discarding some of
the raw data [11] or any irregular transmission along the flight
path [36]. But randomly discarding some of the regularly spaced
samples cannot be easily implemented in practice by using lower
rate A/D converters. Instead, jittered under-sampling which con-
trols the maximum gap in the data is proposed [43]. This under-
samples data first on a coarser grid and then perturbs samples
on a finer grid. Although jittered under-sampling requires accu-
rate jitter control, it provides satisfactory results as with random
under-sampling.

In this work, we propose a simple downsampling scheme that
can be implemented using slower rate A/D converters, without any
jitter control. In this approach, the data is first downsampled by K
in the range direction. The time of the initial sample at each az-
imuth location is pseudo-randomly chosen. This adds randomness
to the data in the azimuth direction. Fig. 3 presents an example
of the under-sampling pattern for K = 4. The randomness in the
range direction is obtained by randomly discarding a small ratio,
L, of the downsampled data. This way, the prerequisites of CS are
Fig. 3. Example of the proposed under-sampling pattern for K = 4.

Table 1
A/D rate and the memory requirement for different values of parameters K and L.

K L New A/D rate Memory requirement

1 0 1 100%
2 0.2 1/2 40%
3 0.1 1/3 30%
4 0.1 1/4 22.5%

met despite the loss of a small portion of the data. As a result, this
method of under-sampling reduces the rate of the A/D converter
by a factor of K and reduces the memory requirement by a factor
of (1 − L)/K . Table 1 lists the reduced A/D rate and the memory
requirement for different values of parameters K and L. Note that
the first row in the table is given as a reference and indicates the
case of original data without any downsampling.

5. Autofocused sparse SAR image reconstruction

The under-sampling scheme described in Section 4 results in
the following measurement relation where the number of mea-
surements is a fraction of the number of unknowns:

yu = ΦGux + w, (15)

where yu and Gu represent the under-sampled measurement vec-
tor and the projection matrix respectively. Therefore, arbitrary
scenes of reflectivity cannot be recovered from the available mea-
surement data. However, if few objects with high reflectivity dom-
inate the scene, sparse reconstruction techniques can provide re-
construction of these objects from the available data. Here Φ also
corresponds to the under-sampled phase error matrix but it is not
indicated as subscripted by u for the sake of brevity.

Assume the transformation matrix Ψ transforms the reflectivity
vector x to a sparse domain,

yu = ΦGuΨα + w = Φ Aα + w. (16)

In the presence of phase errors, sparse SAR image reconstruction
can be formulated as a constrained l1 norm minimization problem:

min
Φ,α

‖α‖1 s.t. ‖yu − Φ Aα‖2 � σ , (17)

which is known as the basis pursuit denoising (BPDN) formulation.
While reconstructing sparse SAR images containing man-made tar-
gets, the number of pixels a target covers can be estimated by
dividing the size of target area to the area of a pixel in the recon-
structed SAR image. With this estimation and the transformation
in which the image is sparse, one can set an upper limit τ to the
l1-norm of the target image. Then the SAR image reconstruction
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problem can be transformed into the following Lasso formula-
tion [12,44],

min
Φ,α

‖yu − Φ Aα‖2 s.t. ‖α‖1 � τ . (18)

By integrating the phase error into the formulation, the re-
quired optimization should be carried out in terms of two sets of
variables, α and Φ . To obtain an optimal solution, Eq. (18) can be
solved by first finding optimal Φ for a given α, then transform-
ing the problem to a minimization over α alone [45]. To minimize
the cost in Eq. (18) for a given α, the phase error matrix Φ that
minimizes ‖yu − Φ Aα‖2 should be obtained. As detailed in Sec-
tion 3 phase errors are assumed to be the same for all the data
corresponding to an azimuth location, resulting in:

min‖yu − Φ Aα‖2
2 =

N∑
i=1

min
∥∥yui − e jφi Aiα

∥∥2
2, (19)

where yui is the partition of the measurement vector correspond-
ing to the azimuth point i and Ai is the partition of the matrix A
corresponding to the range bins of the azimuth point i. Minimiza-
tion of the term on the left side of the equation requires mini-
mization of the individual terms in the summation, which can be
expanded as:∥∥yui − e jφi Aiα

∥∥2
2 = yH

ui yui − e jφi yH
ui Aiα − e− jφi αH AH

i yui

+ αH AH
i Aiα. (20)

For each term, the minimizing φi can be found as:

∂

∂φi

∥∥yui − e jφi Aiα
∥∥2

2 = je− jφi αH AH
i yui − je jφi yH

ui Aiα

= 0. (21)

The unique solution for φi can be obtained as:

φi = � (
αH AH

i yui
)
. (22)

With this result, Eq. (18) can be reduced to an optimization over
α only:

min
α

‖yu − Φ Aα‖2 s.t. ‖α‖1 � τ , φi = � (
αH AH

i yui
)
. (23)

The same approach can also be applied for the BPDN formula-
tion given in Eq. (17). Note that, since the min–min problem is
not convex, the optimization in Eq. (23) has a non-convex fea-
sible set. Therefore, local search techniques typically converge to
local minima of the problem. If the cost surface is such that the
cost of the local minima is significantly higher than the global
minima, a global optimization technique should be used. As illus-
trated in the next section, obtained results indicate that the cost of
the local minima obtained by the proposed approach and the cost
of the global minimum are acceptably close; therefore a slower
converging global optimization technique such as particle swarm
optimization is not utilized for this problem.

At this stage of the formulation, to further improve the im-
age reconstruction quality, TV penalty is integrated into the cost
function [46–50]. Integrated TV penalty smooths the target and its
environment and hence reduces the noise content of the image,
which also increases the effectiveness of the phase error correc-
tion. By adding TV penalty, the cost function becomes:

min
x

‖yu − ΦGux‖2 + βT V (x) s.t.
∥∥Ψ H x

∥∥
1 � τ ,

φi = � (
xH G H

ui yui
)
. (24)

Note that the relations α = Ψ H x and Aα = Gu x are used. Here, TV
stands for total variation and defined as,

TV(x) =
∑√

|∇i x|2i, j + |∇ jx|2i, j, (25)

i, j
where subscripts i, j denote pixel locations in a two dimensional
image. ∇i and ∇ j denote discrete gradients of the image in two
directions and are given by,

(∇i x)i, j = x(i, j) − x(i − 1, j), (26)

(∇ jx)i, j = x(i, j) − x(i, j − 1). (27)

The constrained optimization problem of Eq. (24) can be written
as an unconstrained problem in the Lagrangian form:

arg min
x

g(x) = ∥∥Ψ H x
∥∥

1 + βTV(x) + γ ‖yu − ΦGux‖2
2

s.t. φi = � (
xH G H

ui yui
)
, 1 � i � N. (28)

By using the non-linear conjugate gradient descent algorithm with
backtracking line search [46,51], a numerical solution to Eq. (28)
can be obtained. There are more efficient algorithms published in
the literature to solve l1 minimization problems. The ones using
Bregman methods are especially promising [52–54]. However, in
all these techniques, the transformation in the data fidelity part of
the cost function is a known matrix. But in our case, that matrix
contains the unknown x, due to the multiplication by the phase
error Φ , which leads us to use the conjugate gradient method.
As part of the optimization iterations, the required gradient of the
cost function can be computed as detailed in Appendix A. Profiling
Matlab [55] implementation of this numerical approach revealed
that most of the CPU time is consumed by multiplications of large
scale matrices. Therefore, by exploiting the structure of the in-
volved matrices, significant computational improvements can also
be achieved [56,57].

6. Results obtained on synthetic and real SAR data

In this section, results on both synthetic and real SAR data, ob-
tained from MSTAR database [58], are presented. Raw SAR data is
under-sampled as explained in Section 4. Two different setups are
used for the sparse reconstructions of the synthetic and the MSTAR
data. For the synthetic data, an A/D converter with 1/3 of the
original rate is used and L is chosen as 0.1, which results in 70%
memory reduction. For the MSTAR data, half rate A/D converter is
used and L is chosen as 0.2, which results in 60% memory reduc-
tion. Hence, synthetic data results are obtained by using only 30%
of the original raw data while the MSTAR results are obtained by
using only 40% of the original raw data.

The parameters β and γ in Eq. (28) can be used to adjust the
relative weights of the different components in the cost function.
For example, increasing the weight of the TV part smooths the
noisy areas containing sudden changes in the image. Because this
work is not aimed to put forward specific properties in the images,
equal weights (β = γ = 1) are chosen for balanced contribution of
different parts in the cost function unless otherwise specified.

6.1. Synthetic data reconstructions

The synthetic image used in the trials is shown in Fig. 4(a). Re-
constructed images of the artificial scene by polar format algorithm
(PFA) [1] for the same phase error, but at two different noise lev-
els are shown in Fig. 4(b) and Fig. 4(c) respectively. Both of these
reconstructions are obtained using 3 times more data than the pro-
posed sparse reconstruction technique.

In synthetic data experiments, the transformation Ψ , which
maps x to the sparsity domain, is chosen as the identity matrix.
This works quite well when the speckle noise is negligible. How-
ever, the reconstruction performance degrades when the speckle
noise increases since noise starts having large projection on the
impulsive basis components.
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Fig. 4. The synthetic images by PFA and the reconstructions by CS–PE–TV are illus-
trated. (a) Original reflectivity image. (b) Image with phase error and speckle noise
(SNR = 31 dB) reconstructed by PFA. (c) Image with phase error and speckle noise
(SNR = 19 dB) reconstructed by PFA. (d) Image with phase error and speckle noise
(SNR = 31 dB) reconstructed by CS–PE–TV. (e) Image with phase error and speckle
noise (SNR = 19 dB) reconstructed by CS–PE–TV.

The obtained sparse reconstructions are shown in Fig. 4(d) and
Fig. 4(e). In the case with higher SNR (Fig. 4(d)), CS–PE–TV works
quite well, almost completely removing the phase error. In the
case with lower SNR (Fig. 4(e)), CS–PE–TV concentrates much of
the energy of the target and corrects phase error effects very well.
However, it does not wholly reconstruct the original target and has
some artifacts left in the scene. Compared to the case with higher
SNR, the main reason for the performance degradation in the case
with lower SNR is the speckle noise, which starts having larger
projections on the sparse basis components.

6.2. MSTAR reconstructions

MSTAR database [58] contains publicly available SAR data of
several target types. The ones used in the reconstruction trials are
illustrated in row (a) of Fig. 5. Each contains a target in an envi-
ronment with high speckle noise. These images are reconstructed
using PFA. Row (b) of Fig. 5 gives the same images with artificially
inserted phase error. They are reconstructed again by PFA. The ap-
plied phase error characteristics have been given in Fig. 7.

Row (c) of Fig. 5 shows the images reconstructed by PFA and
autofocused by the phase gradient algorithm (PGA) [7,8]. PGA first
center shifts the brightest pixels in each range bin, then applies
windowing to suppress the effects of other possible targets in the
same range bin. Finally, it estimates the phase error in the az-
imuth dimension and applies phase correction. Generally, one to
three iterations of the PGA are sufficient to estimate and correct
the phase errors successfully.

The results obtained by the proposed sparse SAR image recon-
struction technique on the MSTAR data are illustrated in Fig. 6. For
CS reconstructions, only a fraction of the whole data, obtained by
the method explained in Section 4, is used. Since wavelet frames
are appropriate for representing SAR images containing man-made
targets, Daubechies-4 wavelets are used as the sparsity transform
in the trials with MSTAR data.

For comparison purposes, row (a) of Fig. 6 shows the results of
sparse reconstruction with no phase error correction, which will
be referred to as CS reconstructions. Row (b) displays the results
for the case of applying autofocused sparse reconstruction without
a TV penalty, which will be referred to as CS–PE reconstructions.
This reconstruction is obtained by solving Eq. (28) with β = 0. The
results of the proposed CS–PE–TV reconstructions are presented in
row (c) of Fig. 6.

As expected, CS reconstructions suffer from significant degrada-
tion due to uncompensated phase error. The images reconstructed
by CS–PE show improved phase error correction compared to CS
results. But the noisy nature of the images prevents further im-
provements. Adding TV penalty into the cost function improves
the overall image reconstruction quality and success of phase error
correction. This deduction is clearly demonstrated by comparing
the results of CS–PE–TV to the results of CS–PE. The CS–PE–TV re-
constructs the images and autofocuses them simultaneously with
success.

The phase error applied to the images and its estimate obtained
by the application of CS–PE–TV are shown in Fig. 7. The estimated
phase error closely follows the general form of the applied phase
error. The root mean square error of the estimation is only 1.9% of
the radar’s wavelength.

In order to quantify and compare the image reconstruction per-
formance of the proposed CS–PE–TV technique especially on the
MSTAR data, the following metrics are used:

1. Mean square error (MSE) which is defined as [59]:

MSE = 1

N2

∥∥|x| − |x̂|∥∥2
2, (29)

where x is the original image, x̂ is the reconstructed image,
and N2 is the total number of pixels in the image.

2. Target to background ratio (TBR) [59,60]: This is the ratio of
the absolute maximum of the target region to the absolute av-
erage of the background region. It gives an indication of how
target pixels are discernible with respect to background pixels:

TBR = 20 log10

(
maxi∈T (|(x)i |)
1

NB

∑
j∈B |(x) j|

)
, (30)

where x is the image and NB is the number of pixels in the
background region of the image. T and B represent target and
background regions respectively.

3. Entropy of the image [59]: This is a metric related to sharpness
of the image:

H(x) = −
∑

i

pi log2 pi, (31)

where the discrete variable p contains the histogram counts
of the image x. Entropy is small for sharper images so it is
preferable for an algorithm to result in low entropies for image
formation.

These metrics give indications about the performance of the re-
constructions especially on the target classification applications.
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Fig. 5. Three target images of MSTAR database that are used in the trials. All the images are reconstructed by PFA. Row (a) gives the original images. Row (b) presents the
images with inserted phase error. Row (c) shows the reconstructions of images autofocused by PGA.

Fig. 6. Three target images of MSTAR database that are used in the trials. Row (a) gives the results of CS reconstructions. Row (b) presents the results of CS–PE reconstructions.
Row (c) gives the images reconstructed by CS–PE–TV.
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Fig. 7. The phase error applied to the image (solid line) and the phase error estimate
(dotted line). Y -axis units represent the fractions of the SAR wavelength.

The quantitative performance metrics for the images illustrated in
Fig. 6 are given in Table 2. The table lists the results for three
targets which are reconstructed by using five different techniques.
For each target the first row lists the metrics of the images recon-
structed by PFA. The second row lists the results for the images re-
constructed by PFA and autofocused by PGA. The results of the CS,
CS–PE and CS–PE–TV techniques are listed in the third, fourth and
fifth rows respectively. Note that these results can be improved by
post processing the images. However, we are interested in com-
paring the performances of the applied methods alone, so no post
processing is performed on the images.

PFA–PGA, which makes use of data obtained at Nyquist sam-
pling rate, gives the best results in terms of the MSE metric. For
the TBR and entropy metrics the CS–PE–TV technique provides bet-
ter results than the PFA–PGA technique. The main disadvantage of
the CS–PE–TV method compared to the PFA–PGA method is the
computational complexity which currently limits the application of
the CS–PE–TV technique to offline reconstructions. However, with
the rapid advances in signal processor hardware, the application of
CS to SAR image reconstruction can become feasible in the near
future.

PFA performs poorly by all metrics. Even the CS technique per-
forms better than the PFA. This result confirms the statement that
p-norm regularizations reduce the amplitude and phase irregular-
ities for p < 2 [15]. The CS–PE is an improvement over CS for the
MSE metric. Phase error model integration to the problem tries to
compensate the effects of the phase error and guarantees more
localized target images. But TBR and the entropy of the image
degrade with CS–PE as compared to CS. Because the lack of TV
penalty in the CS–PE technique increases the entropy. TV penalty,
in the CS technique smooths the constant areas and thereby re-
duces the average of the background region in the TBR formula-
tion.

With phase error model integrated and the TV penalty added,
CS–PE–TV outperforms all the other techniques (except the PFA–
PGA technique in MSE parameter as indicated above). Almost all
the metrics listed in the table indicate an improvement for the im-
ages reconstructed by the CS–PE–TV technique. Therefore, adding
phase error in the signal model embeds autofocus property into
the image reconstruction. Furthermore, adding in TV penalty to the
cost function improves the overall reconstruction performance for
SAR images with high speckle noise. In conclusion, these results
demonstrate that the proposed CS–PE–TV technique provides ro-
bust, simultaneous SAR image reconstruction and autofocus.
Table 2
Performance metrics for the imagery reconstructed by different methods.

MSE TBR Entropy

Target (1) PFA 6.2 × 10−3 27.02 2.88
PFA–PGA 2.5 × 10−4 29.55 2.50
CS 5.7 × 10−3 30.68 2.50
CS–PE 5.2 × 10−3 28.91 2.76
CS–PE–TV 3.6 × 10−3 31.59 2.42

Target (2) PFA 7.7 × 10−3 23.99 3.34
PFA–PGA 1.9 × 10−3 27.08 2.95
CS 6.8 × 10−3 27.56 3.01
CS–PE 6.0 × 10−3 25.65 3.29
CS–PE–TV 4.5 × 10−3 28.41 2.94

Target (3) PFA 10.9 × 10−3 24.31 2.96
PFA–PGA 9.3 × 10−4 26.23 2.80
CS 10.4 × 10−3 27.48 2.73
CS–PE 9.8 × 10−3 24.77 3.13
CS–PE–TV 7.2 × 10−3 30.23 2.42

7. Conclusions

A compressive sensing framework is proposed for simultaneous
motion compensation and image reconstruction for SAR data ob-
tained at a fraction of Nyquist rate of sampling. Under-sampling
is performed by using reduced rate A/D converters which also
decrease the required memory size and the bandwidth of the
data link. To improve performance, a total variation penalty on
the reconstructed image is also incorporated into the proposed
optimization technique. Detailed investigation of the reconstruc-
tions of both synthetic and real data sets demonstrates that, un-
der well recognized performance metrics, the proposed CS–PE–TV
technique improves performance over the common PFA–PGA tech-
nique and other alternative CS based techniques.

Research on the more efficient optimization of the proposed
CS–PE–TV cost function is expected to reduce the computational
requirements of the proposed technique and increase its applica-
bility.

Appendix A. Gradient of the cost function

The first term of the cost function in Eq. (28) includes abso-
lute values. The absolute value is not a smooth function so it is
approximated by,

|x| = √
xx∗ + ε, (A.1)

where ε is a small positive smoothing parameter. By using this
approximation, the gradient of the first term in the cost function
given in Eq. (28) becomes,

∇∥∥Ψ H x
∥∥

1 = Ψ W −1
1 Ψ H x, (A.2)

where W1 is a diagonal matrix with corresponding elements,

wi =
√∣∣(Ψ H x

)
i

∣∣2 + ε1. (A.3)

Since the total variation is also a non-smooth function, the follow-
ing approximation is used,

TV(x) =
∑
i, j

√
|∇i x|2i, j + |∇ jx|2i, j + μ, (A.4)

where μ is a small positive smoothing parameter. With this ap-
proximation, the gradient of the total variation part of the cost
function is given by [49],

∇TV(x) = Ii, j − Ii+1, j + J i, j − J i, j+1, (A.5)

where

Ii, j = (∇i x)i, j√
(∇i x)2

i, j + (∇ jx)2
i, j + μ

, (A.6)
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J i, j = (∇ j x)i, j√
(∇i x)2

i, j + (∇ j x)2
i, j + μ

. (A.7)

The third term in the cost function is re-written below,

‖yu − ΦGux‖2
2 = yH

u yu + xH G H
u Gux − yH

u ΦGux

− xH G H
u ΦH yu. (A.8)

The last two terms of the above equation can be expanded as,

‖yu − ΦGux‖2
2 = yH

u yu + xH G H
u Gux

−
N∑

i=1

e jφi yH
ui Guix −

N∑
i=1

e− jφi xH G H
ui yui . (A.9)

Putting the relation φi = � (xH G H
ui yui) which is obtained by Eq. (22)

into the above equation,

‖yu − ΦGux‖2
2 = yH

u yu + xH G H
u Gux − 2

N∑
i=1

∣∣yH
ui Guix

∣∣. (A.10)

By using the approximation in Eq. (A.1), the gradient of the third
term of the cost function is given by,

∇‖yu − ΦGui x‖2
2

= 2G H
u Gux − 2

N∑
i=1

yH
ui Guix√

xH G H
ui yui yH

ui Guix + ε2

G H
ui yui . (A.11)

By combining gradients of all these three terms, the following final
expression for the gradient of the cost function is obtained:

∇g(x) = Ψ W −1
1 Ψ H x + β(Ii, j − Ii+1, j + J i, j − J i, j+1)

+ γ

(
2G H

u Gux − 2
N∑

i=1

yH
ui Guix√

xH G H
ui yui yH

ui Guix + ε2

G H
ui yui

)
.

(A.12)
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