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Abstract Edge detection plays an important role in identifying regions of in-
terest in an underlying signal or image. In some applications, such as magnetic
resonance imaging (MRI) or synthetic aperture radar (SAR), data are sam-
pled in the Fourier domain. Many algorithms have been developed to efficiently
extract edges of images when uniform Fourier data are acquired. However, in
cases where the data are sampled non-uniformly, such as in non-Cartesian MRI
or SAR, standard inverse Fourier transformation techniques are no longer suit-
able. Methods exist for handling these types of sampling patterns, but are often
ill-equipped for cases where data are highly non-uniform or when the data are
corrupted or otherwise not usable in certain parts of the frequency domain.
This investigation further develops an existing approach to discontinuity de-
tection, and involves the use of concentration factors. Previous research shows
that the concentration factor technique can successfully determine jump dis-
continuities in non-uniform data. However, as the distribution diverges further
away from uniformity so does the efficacy of the identification. Thus we propose
a method that employs the finite Fourier approximation to specifically tailor
the design of concentration factors. We also adapt the algorithm to incorpo-
rate appropriate smoothness assumptions in the piecewise smooth regions of
the function. Numerical results indicate that our new design method produces
concentration factors which can more precisely identify jump locations than
those previously developed in both one and two dimensions.
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1 Introduction

Edge detection is critical for identifying regions of interests in images in a
variety of applications. For instance, in magnetic resonance imaging (MRI),
edge detection aids in the process of tissue classification and tissue boundary
identification, [25,20]. Determining the the edges in synthetic aperture radar
(SAR) images can improve target identification. In these applications, data
are acquired as Fourier samples. Since Fourier data are inherently global in
nature, giving information about the underlying image as a whole, determining
local features such as edges exclusively from Fourier samples is challenging.
The concentration factor edge detection method, designed in [16], determines
edges of a piecewise smooth function from a finite sampling of uniform Fourier
data. This approach relies on a “concentration factor”, which is essentially a
bandpass filter, derived to satisfy certain admissibility conditions, to concen-
trate at the singular support of the underlying piecewise smooth function.

There have been various investigations on the use of concentration factors
for non-uniform Fourier data. For example, in [14,15], concentration factors
were explicitly determined to satisfy the admissibility criteria established in
[16,17] for uniform data. In [28,30] the approach was altered so that the con-
centration factors were found by solving an optimization problem. Specific
constraints on the problem allowed for customization. We follow the latter
approach in this investigation, and improve the method further in two ways.
First, we adopt the view in [14,15] that the given data represent Fourier frame
data. In so doing, we obtain an accurate reconstruction when the Fourier data
are non-uniformly sampled. Second, we modify the design so that additional
smoothness constraints are satisfied away from the jump discontinuities. Such
realistic assumptions yield a more refined approach to constructing concentra-
tion factors for non-uniform Fourier data. The first improvement extends the
use of Fourier frame function reconstruction to detecting edges. The second
improvement is a novel development of a high order expansion of the jump
function, leading to additional constraints in the optimization problem and
faster convergence to the underlying jump function. Our approach can also be
modified to include other constraints for different applications.

Our method requires knowledge of the inverse (Fourier) frame operator,
which we will approximate using the admissible frame algorithm developed
in [27]. Of course, frames have been used for the purpose of reconstruction
before, [8,5]. However, the method in [27] is shown to be convergent and it is
also numerically efficient as it can be implemented using an NFFT, [15]. We
note that recent investigations on stable reconstructions from non-uniform
Fourier data [1–4] might also be useful in deriving the inverse frame operator
approximations used in our method.

The rest of this paper is organized as follows. Section 2 discusses the con-
centration factor edge detection method for non-uniform Fourier data and
lays the foundation for our problem formulation. In Section 3 we give a brief
overview of frame theory, focusing specifically on results that are applicable to
finite Fourier frames approximation approach to reconstruction. In Section 4
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we formulate the optimization problem and design our concentration factors.
Numerical results for two-dimensional problems are provided and discussed in
Section 5. Section 6 contains concluding remarks.

2 Preliminaries

Consider an unknown, piecewise analytic function f : R→ R that is supported
on [−1, 1]. Later we will consider the two-dimensional case. The corresponding
jump function [f ] : R→ R is defined as

[f ](x) = f(x+)− f(x−). (1)

Note that [f ] is well-defined since f is piecewise continuous and that [f ] = 0
everywhere except at jump discontinuities, where it takes on the value of the
jump. Since ultimately we will want to reconstruct the jump function on a
grid, we discretize x ∈ [−1, 1] as {xj}Jj=−J . Although there is no restriction on

the distribution of grid points, for simplicity we define xj = j
J . We also make

the assumption that there is at most one jump within a cell Ij = [xj , xj+1).
Thus, if [f ](xj) is the value of the jump that occurs within the cell Ij , we can
write

[f ](x) =

J−1∑
j=−J

[f ](xj)δxj
(x). (2)

For the purposes of algorithmic development, we assume for now that there
is only one discontinuity at x = ξ ∈ (−1, 1). In this case,

[f ](x) = [f ](ξ)δξ(x), (3)

where δξ(x) = 1 if x = ξ and 0 otherwise. In 4 we demonstrate that our
method also applies when there are multiple jumps.

Suppose we are given a finite sequence of Fourier samples of f ,

f̂(λk) =

∫ 1

−1
f(x)e−πiλkxdx, (4)

where λk ∈ R, −M ≤ k ≤M , from which we seek an approximation to (3).
The assumption that f is sampled non-uniformly in Fourier space reflects

the data distribution patterns in certain signal processing applications. More-
over, even technologies designed to sample uniformly sometimes experience
uneven data distribution caused by machine error. To study an analogous
one-dimensional problem, we consider three cases:

– Jittered sampling, defined by

λk = k ± νk, k = −M, · · ·M, (5)

where νk are uniformly distributed within the interval and |θ| ≤ 1/4. This
sampling pattern is designed to mimic samples taken on a theoretically
Cartesian grid, while introducing the slight deviations that often occur in
a real world setting.
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– Quadratic sampling, defined by

λk = sgn(k)
1

M
k2, k = −M, · · · ,M. (6)

This is a one-dimensional case designed to imitate a cross-section of a non-
Cartesian sampling pattern that oversamples in the low frequencies, but is
sparsely sampled in the high frequency part of the domain.

– Logarithmic sampling are acquired at logarithmic intervals, with more sam-
ples acquired in lower frequencies. Specifically, log |λk| is evenly distributed
between −v and log n, with v > 0 and 2n + 1 being the total number of
samples. This sampling scheme is even sparser than the quadratic sampling
pattern in the high frequencies.

Figure 1 illustrates the sampling patterns that will be used to demonstrate
our numerical results in one dimension.
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Fig. 1 Sampling patterns.

2.1 Edge detection from uniform data

Below is a brief review of the the concentration factor edge detection method,
[16], which was developed to approximate (2) from the first 2M + 1 (uniform)
Fourier coefficients of a piecewise smooth function f . It is given by

SσM (f)(x) = i
∑
|k|≤M

f̂(k)sgn(k)σ

(
|k|
M

)
eπikx. (7)

The convergence properties of (7) depend on the choice of factors σ(u) =

σ
(
|k|
M

)
, termed concentration factors, which satisfy the admissibility condi-

tions

1.

M∑
k=1

σ

(
|k|
M

)
sin(kπx) is odd

2.
σ(u)

u
∈ C2(0, 1)
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3.

∫ 1

ν

σ(u)

u
du→ −1, ν = ν(M) > 0 being small

If these conditions are satisfied, SσM (f) “concentrates” at the singular support
of f and the jump approximation obeys the concentration property, [11],

SσM (f)(x) = [f ](x) +

O
(

logM
M

)
d(x) ≤ logM

M

O
(

logM
(Md(x))s

)
d(x) >> 1

M .
(8)

Here, d(x) denotes the distance between a point in the domain and the near-
est discontinuity, while s > 0 depends on the concentration factor chosen.
Note that (7) cannot be directly extended to the case when λk 6= k because
{eπiλkx}Mk=−M does not form an orthogonal basis.

The partial sum approximation in (7) does not directly prescribe how the
concentration factors should be chosen. Indeed, as observed in [18], the ad-
missibility conditions allow for significant flexibility in the characterization of
concentration factors, which can be exploited to refine the jump function ap-
proximation using non-linear post-processing algorithms. A different approach
was suggested in [30,28] that uses the formulation in (7) to explicitly design
concentration factors that yield certain desirable properties. This can be use-
ful when certain assumptions can be made about the underlying function.
Another advantage of this approach, which will be described later in Section
4.1, is that it provides a suitable framework for situations where the data are
not acquired as standard uniform Fourier data. For example, in [30] the con-
centration factors were designed for the case when bands of Fourier data were
not available, and in [28] the non-uniform case was considered.

3 Finite frame reconstruction

Our adaptation of the concentration factor edge detection method involves the
finite Fourier frame approximation method described in [27]. This methodology
makes use of results from frame theory, [19,10,21]. Below is a brief review of
relevant results, starting with key definitions.

Definition 1 A frame for a Hilbert space H is a sequence of vectors {ϕk :
k ∈ Z} ⊆ H for which there exists constants 0 < A ≤ B < ∞ such that, for
every f ∈ H, we have

A||f ||2 ≤
∑
k∈Z
|〈f, ϕk〉|2 ≤ B||f ||2. (9)

In essence, a frame is a generalized notion of a basis which requires that
the frame elements span H but are not necessarily linearly independent. For
example, if H is finite dimensional, then any frame of cardinality greater than
the dimension of H is linearly dependent. This property may be advantageous
for function or image reconstructions since the associated “redundancy” can
help recover losses during signal acquisition, [19].
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Definition 2 If {ϕk : k ∈ Z} ⊆ H is a frame for H then the associated frame
operator S : H → H is defined as

Sf =
∑
k∈Z
〈f, ϕk〉ϕk. (10)

Observe that the conditions outlined in (9) indicate that its frame operator is
bounded, invertible, positive, and self-adjoint, [19]. From this, we can conclude
that both a right- and left-hand identity for S exists. In this paper, we will
consider H = L2(−1, 1) and ϕk(x) = eiλkπx. The left-hand identity is then
used to reconstruct the underlying function as

f = S−1Sf =
∑
k∈Z
〈f, ϕk〉S−1ϕk =

∑
k∈Z

f̂(λk)ϕ̃k, (11)

where ϕ̃k = S−1ϕk, k ∈ Z, is the canonical dual frame and f̂(λk) is given in
(4).

3.1 Admissible frame approximation

Computing (11) is difficult since in general no closed form for constructing
S−1 exists. In [27] a method was developed to construct a finite-dimensional
approximation of ϕ̃k by projecting {ϕk : k ∈ Z} onto an admissible frame
{ψl : l ∈ Z}, which satisfies the following criteria:

Definition 3 A frame {ψl : l ∈ Z} is admissible with respect to the frame
{ϕk : k ∈ Z} if the following two conditions hold:

1. If it is intrinsically self-localized, that is, there exists c0 ∈ R+ and t > 1
such that

|〈ψk, ψl〉| ≤ c0(1 + |k − l|)−t.

2. There exists c1 ∈ R+ and s > 1/2,

|〈ϕk, ψl〉| ≤ c1(1 + |k − l|)−s.

If {ψl : l ∈ Z} is an admissible frame with respect to {ϕk : k ∈ Z}, then the
dual frame {ϕ̃k : k ∈ Z} can be approximated [27] by

ϕ̃k ≈
∑
|l|≤N

bl,k ψl =: ϕ̃N,k, (12)

where bl,k is the (l, k)th entry of the matrix B = Ψ †. Here † denotes the
Moore-Penrose pseudo-inverse, and Ψ is given by

Ψ = [〈ϕk, ψl〉], |k| ≤M , |l| ≤ N .
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In our case, since ϕk(x) = eπiλkx, we choose ψl(x) = eπilx to be the corre-
sponding admissible frame yielding

〈ϕk, ψl〉 =

∫ 1

−1
eπi(λk−`)x = 2sinc(λk − l).

The approximation of ϕ̃k in (12) is then substituted into (11) to complete the
reconstruction of f yielding the approximation

TMf =
∑
|l|≤N

∑
|k|≤M

f̂(λk)bl,kψl =
∑
|k|≤M

f̂(λk)ϕ̃N,k(x). (13)

In [27] it was shown that under certain smoothness assumptions on f and
conditions on the relationship between M and N that ||TMf −f ||L2(−1,1) → 0
as M →∞.

4 Concentration factor design for non-uniform Fourier data

We now return to our previous discussion of determining edges of piecewise
smooth functions from their non-uniform Fourier data. Since (7) does not
apply in this case, we develop an approach that uses (13) to construct an
approximation to (3).1 First, let us define

TσMf(x) =
∑
|k|≤M

σkf̂(λk)ϕ̃N,k(x) (14)

as the approximation to [f ](x). We now seek σ ∈ C2M+1 such that, for a given
set of reconstruction points, xj = j

J , −J ≤ j ≤ J, for some J ∈ Z+, we have2

TσMf(xj) =
∑
|k|≤M

σkf̂(λk)ϕ̃N,k(xj) ≈ [f ](ξ)δξ(xj). (15)

To formulate the optimization problem for determining σ in (15), we first
make some observations regarding the underlying function, f . Specifically, if
f is piecewise-analytic (with a finite number of jump discontinuities), then a
superposition of scaled and shifted ramp functions, defined in (16), provides
a first order approximation. While using such an approximation is ill-advised
for function reconstruction, it is perfectly suitable for approximating [f ](x),
as described below. Viewing edge detection in this way is advantageous since
the Fourier coefficients of a ramp function are explicitly known.

1 This idea was first investigated in [23].
2 Recall that we assume that the discontinuities occur only on grid points xj . For conve-

nience we choose xj = j
J

, −J ≤ j ≤ J so that the value x = 0 falls on the grid point x0.
The system can be designed for any chosen gridpoints, however.
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We now proceed in constructing the optimization problem by defining the
ramp function, r(x) : [−1, 1]→ R as

r(x) =

{
−x+1

2 x ≤ 0

−x−12 x > 0.
(16)

The associated jump function for rξ(x) = r(x− ξ), where ξ ∈ (−1, 1), is given
by

[rξ](x) =

{
1 x = ξ

0 otherwise.
(17)

A first order approximation to f(x) with a single jump discontinuity located
at x = ξ is then

f(x) ≈ arξ(x), (18)

where a ∈ R. Note that the corresponding jump function of f is exactly
[f ](x) = a[rξ](x), an idea that was exploited in [30] to design concentration
factors from uniform Fourier data.

Remark 1 For functions with multiple discontinuities, we can replace (18) with

f(x) ≈
J∑
j=1

ajrξj (x). (19)

Due to the linearity of (15) on the given Fourier data, the results that follow for
a single jump similarly hold for multiple jumps. Of course, the global nature
of the Fourier data will cause additional interfering oscillations in each jump
discontinuity neighborhood. Hence we assume that the jump discontinuities
are located sufficiently far apart. More discussion on the validity of (15) for
multiple jumps (in the uniform data case) can be found in [30]. We will also
demonstrate its validity in our numerical experiments.

For the non-uniform case, we discretize ar(x− ξ) and substitute into (15)
to obtain

aTσMrξ(xj) = a
∑
|k|≤M

σkr̂ξ(λk)ϕ̃N,k(xj) ≈ aδξ(xj), (20)

where r̂ξ are the Fourier coefficients of rξ(x). Translating the above system
yields ∑

|k|≤M

σkr̂(λk)ϕ̃N,k(xj) ≈ δ0(xj), (21)

where r̂(λk) are the Fourier coefficients of r(x) explicitly given by

r̂(λk) =

{
0 λk = 0
(sin(πλk)−πλk)i

(πλk)2
otherwise.

(22)
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We note that δξ(x) only takes non-trivial values on a set of measure 0 and
does not have a non-trivial Fourier expansion. Hence we will instead consider
a smooth approximation of δξ(x), given by

hξ(x) ≈ δξ(x), ε > 0, (23)

where hξ = h(x−ξε ) for some function h and positive constant ε. Typically h is
an (essentially) compactly supported bump function such that hξ is supported
in [ξ − ε, ξ + ε] with hξ(ξ) = 1. As ε → 0, hξ(x) → δξ(x). The choice of ε is
critical to how the method performs. As ε increases, the approximation is
more regularized, but the edges are not as well localized. This trade off can be
decided on a case by case basis, depending on other external influences, such
as the amount of and corruption in the data, see e.g. [30,14]. Replacing δξ(x)
with hξ(x) in (3) yields

[f ](x) ≈ [f ](ξ)hξ(x). (24)

Thus, (21) becomes∑
|k|≤M

σkr̂(λk)ϕ̃N,k(xj) ≈ h0(x) ≈
∑
|k|≤M

ĥ0(λk)ϕ̃N,k(xj) (25)

or more simply,

σk =
ĥ0(λk)

r̂(λk)
, k = −M, · · · ,M. (26)

Remark 2 Several approximations are needed to obtain the explicit expression
for σk in (26). First, since δξ(x) does not have a non-trivial frame expansion,
we use (23), which leads directly to the second approximation (24). The er-
ror is controlled by the width of ε. The final approximation in (25) is a finite
truncation of the infinite frame expansion and a numerical dual frame approx-
imation. Its error analysis is presented in [27].

This explicit form for σ in (26) is what was originally derived in [16] for
different choices of hξ given uniform Fourier data, and in [14] in the non-
uniform case. Some examples include

1. Step function

hξ(x) =

{
1 if ξ − ε ≤ x ≤ ξ ≤ ξ + ε

0 else.
(27)

2. Hat function

hξ(x) =


1
ε (x− ξ + ε) if ξ − ε ≤ x ≤ ξ
− 1
ε (x− ξ − ε) if ξ ≤ x ≤ ξ + ε

0 else.

(28)

3. Gaussian

hξ(x) = exp
(
−5(

x− ξ
ε

)2
)
. (29)
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In this investigation, we chose ε = .07 for all three cases of hξ and all sampling

patterns. Observe that ĥ0(λk) can be explicitly determined for all three cases
and (14) directly applied. This straightforward approach has been demon-
strated to be successful in pinpointing edges after some additional post-processing,
[18]. We remark that h can also be chosen to be oscillatory, and in some ap-
plications this may be desirable since in this case h is more easily generated
by a Fourier partial sum. Details of the properties of h can be found in [17].
No attempt has been made here to determine optimal smooth approximation
functions and corresponding parameters.

We first consider

Example 1

f1(x) =

{
cos(πx− πx

2 sign(−x− 1/2)) −1 ≤ x ≤ 0;

cos( 5πx
2 + πx sign(x− 1/2)) 0 < x ≤ 1.

with

[f1](x) =


−
√

2 x = −.5;√
2 x = .5;

0 otherwise.

Figure 2 displays the concentration factors (CF) determined from (26) us-
ing the three examples of hξ(x) given in (27), (28), and (29), for the jittered
sampling case with M = N = 100. The corresponding jump function approx-
imations for Example 1, given by (14), are shown in Figure 3. In Section 4.1
we discuss how this slow convergence may be improved.
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Fig. 2 Concentration factors determined by (26) with three examples of hξ(x).

We now consider

Example 2

f2(x) =


− 1

2 (1− x2)2, −1 ≤ x ≤ −1/2;

cos(4πx), −1/2 < x < 1/2;

(1− x2)4, 1/2 ≤ x ≤ 1;

0, otherwise.
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Fig. 3 Approximation of [f1](x) using (15) with concentration factors determined by (26).

with

[f2](x) =


42
31 x = −1/2;

− 175
256 x = 1/2;

0 otherwise.

As before, for M = N = 100 and the jittered sampling case, we use (26)
with (27), (28), and (29), to compute the concentration factors for the jump
function approximation, (15). The results are displayed in Figure 4.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) TσMf2(x) with (27)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

(b) TσMf2(x) with (28)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

(c) TσMf2(x) with (29)

Fig. 4 Approximation of [f2](x) using (15) with concentration factors determined by (26).

Clearly, using (26) to determine the concentration factor when given jit-
tered Fourier data, (5), is even less effective for Example 2. All of the jump
function approximations exhibit large oscillatory artifacts away from the two
true jump locations, ξ = ± 1

2 . Such artifacts, caused by regularizing δξ(x), may
lead to false detections away from the true edges, especially when the function
has considerable variation in smooth regions. This issue has been addressed
before, and has been mitigated by using non-linear post-processing on the re-
sults, [17,18]. The accuracy decreases as the Fourier data distribution becomes
more irregular, however. Moreover, although there is an explicit formula for
the concentration factors given in (25), there may be more suitable ways to
construct the concentration factors given prior information about the function.
For example, in [30] it was recognized that the sparsity of the jump function,
[f ] in (2), could be exploited in developing concentration factors. The resulting
algorithm, described in Section 4.1, has the additional advantage of taking into
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consideration user concerns, such as the undesirability of oscillatory artifacts
or corrupted and/or unusable data.

4.1 Exploiting sparsity of the jump function for concentration design

Determining concentration factors using (25) provides one type of regular-
ization for (21). However, as was shown in [30] given uniform Fourier data,
exploiting the sparsity of [f ] provides another method of regularization. In
this case we introduce an optimization problem as a way to determine σ. We
start by defining the operator

Definition 4 Let Dx
M : C2M+1 → C2J+1 be a linear operator such that

(Dx
Mσ)j =

∑
|k|≤M

σkr̂(λk)ϕ̃N,k(xj), ∀σ ∈ C2M+1. (30)

In order to set up the optimization problem, we rewrite (30) as a linear system
and define the matrix D as

Dk,j = r̂(λk)ϕ̃N,k(xj). (31)

To satisfy (21), we therefore require

(Dσ)j = δj,0 =

{
1 j = 0

0 elsewhere,
(32)

where, as before, xj = j
J , j = −J, · · · , J, are the associated grid points yielding

x0 = 0. Hence (32) establishes a constraint for determining σ. To determine
the cost function, observe that the underlying function f has only a single
jump at 0, and that the jump function [f ](x) is zero almost everywhere except
at x = 0. Thus, as was established in [30], we seek to minimize Dσ over the
domain [−1, 1], leading to the constrained optimization problem:

minimize
σ

||Dσ|| subject to (Dσ)0 = 1. (33)

Following [30], we employed `1 and `2 regularization to solve (33), yielding
the algorithm:

Algorithm 1 [Concentration factor design for non-uniform Fourier data.]3

Define D as in (31). Determine σ as the solution to

minimize
σ

||Dσ||`1or`2 subject to (Dσ)0 = 1. (34)

Once the vector of concentration factors σ is determined, it can be directly
incorporated into (14) to approximate [f ](x). Figure 5(a) shows the concen-
tration factors for jittered sampling with M = N = 100 using both the `1 and
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Fig. 5 TσMf1(x) where σ is determined from Algorithm 1 given jittered Fourier samples.
Here M = N = 100.

`2 minimization. Figure 5(b) displays the jump function approximation, (14),
for Example 1 using the concentration factors calculated by Algorithm 1.

There are several ways to modify Algorithm 1 that may be advantageous
under different circumstances. For example, in the case of uniform Fourier
data, an extra constraint was added that forced σk = 0 whenever k1 ≤ |k| ≤ k2,
(see [30]). This would be relevant in situations where the Fourier data in certain
intervals are missing or corrupted. Another modification could be made by
replacing δ0(x) with h0(x). Specifically,

minimize
σ

‖Dσ‖`1 subject to ‖Dσ − h‖`2 < δ, (35)

where h = {h0(xj),−J,≤ j ≤ J}, and δ > 0 is some pre-determined error
tolerance. Using (35) might be beneficial when the data are noisy or under-
sampled. Figures 6 demonstrate the results using (35) for Example 1 with
the jittered sampling pattern and M = N = 100, where h0 is given by (29).
In Figure 7, Gaussian noise with mean 0 and standard deviation of 0.02 was
added to the Fourier data.
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(a) σ determined using (35)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

(b) TσMf1(x)

Fig. 6 TσMf1(x) where σ is determined from (35) given jittered Fourier samples. Here
M = N = 100.

3 The numerical results using Algorithm 1 were first reported in [23].
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(a) TσMf1(x) using Algorithm 1
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(b) TσMf1(x) using (35)

Fig. 7 TσMf1(x) when given jittered noisy Fourier data. Here M = N = 100.

4.2 Refinement to concentration factor design

While Algorithm 1 and its modifications provide a general technique to deter-
mine the concentration factors for (15), it does not take into account any ad-
ditional information about f . However, in many applications, f is in a smaller
class of functions, for example, piecewise polynomials or piecewise trigonomet-
ric polynomials. In this case, assuming once again that f has a single jump
discontinuity at x = ξ, we can write

f(x) = s(x) + [f ](ξ)rξ(x), (36)

where rξ(x) is defined in (16), and s(x) denotes the continuous part of f . In
other words, (36) is a higher order extension of (18).

As before, we still seek the convergence of (20). However, we now add the
constraint that TσM in (15) satisfies

TσMs(xj) ≈ 0

for all xj ∈ (−1, 1) since there is no jump in s(x). By so doing, we require that
the smooth regions of f be annihilated in the approximation of [f ](x).4 Once
again translating the jump to x = 0 , we can construct the following system
to determine σ from a set of grid points xj = j

J , j = −J, · · · , J , as∑
|k|≤M

σkŝ(λk)ϕ̃N,k(xj) ≈ 0

∑
|k|≤M

σkr̂(λk)ϕ̃N,k(xj) ≈ δ0(xj). (37)

The system in (37) allows for some flexibility in setting up the optimization
problem. As discussed previously, there are a variety of ways to approximate

4 Indeed, a related idea was examined in [30] for suppressing higher order terms in (36)
given uniform samples, but in this case we design s(x) to more closely resemble the smooth
part of the underlying function.
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δξ(x) that satisfy the admissibility conditions for concentration factors, for
example those given in (27), (28) and (29).

We now propose an algorithm for designing concentration factors that ex-
ploits prior assumptions about the class of functions f may belong to. The

idea is to determine an optimal ĥ = {ĥk}Mk=−M , where ĥk = ĥ0(λk), by for-
mulating a discrete minimization problem rather than using a pre-determined
regularization that makes no assumption on s(x). To do this, we will deter-
mine ĥ to satisfy the two constraints in (37). In this way we are able to further
adapt the algorithm for the particular application in mind. For example, if it
is expected that the underlying signal f can be decomposed as in (36), the
concentration factor design in Algorithm 2 should yield optimal results. To
this end, we rewrite the constraints (37) in terms of ĥ as

∑
|k|≤M

ĥk
r̂(λk)

ŝ(λk)ϕ̃N,k(xj) ≈ 0 and
∑
|k|≤M

ĥkϕ̃N,k(xj) ≈ δ0(xj).

Algorithm 2 [Refined Concentration factor design for non-uniform Fourier

data.] Given 2M+1 Fourier coefficients of a piecewise smooth function, f̂(λk)
in (4):

1. Choose the smooth part s(x) to be consistent with (36) and define

F =
[
ϕ̃N,k(xj)

]J,M
j=−J,k=−M and S =

[
ŝ(λk)

r̂(λk)
ϕ̃N,k(xj)

]J,M
j=−J,k=−M

.

2. Determine ĥ as the solution to

min
ĥ∈R2M+1

‖Fĥ‖`1 + µ‖Sĥ‖`1 ,

for xj = j
J , j = −J, · · · J and some positive constant µ.

3. Define σk = ĥk

r̂(λk)
, k = −M, · · · ,M .

We chose µ = 1000 for each performance of Algorithm 2. As before, once the
vector of concentration factors σ is determined, it can be directly incorporated
into (14) to approximate [f ](x). It is also straightforward to modify Algorithm
2 to account for missing bands of data, or to impose other constraints on the
solution. What remains is how to choose s(x), which depends on what prior
information is known about the underlying function f . For example, choosing
s(x) = 0 returns Algorithm 1. Here we consider two other options.

1. s1(x) is a hat function

s1(x) =

{
−x+1

2 , −1 ≤ x ≤ 0;
x−1
2 , 0 < x ≤ 1.

(38)
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2. s2(x) is some varying smooth function

s2(x) =

{
− (x+1)3

12 , −1 ≤ x ≤ 0;

− (x−1)3
12 − 1

6 , 0 < x ≤ 1.
(39)

We consider these two cases to represent very different scenarios. On the
one hand, s1(x) suggests that the underlying function has discontinuities in
the derivatives as well. On the other hand, s2(x) may represent the situation
where the underlying function is basically piecewise constant or linear with
smooth variation between the jumps. For example, variation may be apparent
in different tissue types, but should not be misconstrued as being discontinu-
ous.
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(a) CF from Algorithm 2
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(b) ĥ from Algorithm 2
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(c) TσMf2(x)

Fig. 8 TσMf2(x) by Algorithm 2 for the jittered sampling pattern and M = N = 100.

We first consider f2(x). Observe that f ′2(x) also has discontinuities at the
locations. Thus using s1(x) in (36) increases the expansion order of f . Figure 8
demonstrates the results using Algorithm 2 using jittered sampling and M =
N = 100, while Figure 9 displays the corresponding results for the quadratic
(M = 100, N = 40) and logarithmic (M = 100, N = 25) sampling. Observe
that as the sampling becomes increasingly non-uniform, the ratio of N to M
decreases. This is consistent with the results in [27] for admissible frames.
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(a) quadratic sampling (N = 40)
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(b) logarithmic sampling (N = 25)

Fig. 9 TσMf2(x) by Algorithm 2 for the quadratic and logarithmic sampling patterns and
M = 100.
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To demonstrate the efficacy of Algorithm 2 using s2(x), we consider

Example 3

f3(x) =


π(1− x2)2, −1 ≤ x ≤ −1/2 or 1/2 ≤ x ≤ 1;

− 1
6 sin(6πx), −1/2 < x < 1/2;

0, otherwise.

[f3](x) =


− 9

16π, x = −1/2;
9
16π, x = 1/2;

0, otherwise.

−1 −0.5 0 0.5 1
−2

−1

0

1

2

−1 −0.5 0 0.5 1
−2

−1

0

1

2

(a) jittered sampling (N = 100)
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(b) quadratic sampling (N = 40)
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(c) log sampling (N = 25)

Fig. 10 TσMf3(x) using Algorithms 1 (top row) and 2 (bottom row) for Example 3 with
jittered sampling (a); quadratic sampling (b); and logarithmic sampling (c). Here M = 100.

Observe that f3(x) does not have discontinuities in the derivative, which
suggests that s2(x) in (39) will give a better approximation in (36). Figure
10 compares TσMf3(x) using Algorithms 1 and 2 for the three sampling cases
when M = 100.

4.3 Using l1 regularization to recover [f ](x)

Algorithms 1 and 2 provide a mechanism to recover concentration factors
σk, k = −M, · · · ,M , which are in turn used in (14) to recover [f ](x). In
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fact, the approximation can be further refined by exploiting the sparsity of
[f ](x) which is evident in (2). This was first suggested in [28] for explicitly
defined concentration factors. Using the results from the current investigation,
the algorithm for recovering [f ](x) from non-uniform Fourier data is given as
follows:

Algorithm 3 [Reconstruction of [f ](x) from non-uniform Fourier data.] Given

2M + 1 Fourier coefficients of a piecewise smooth function, f̂(λk) in (4):

1. Determine σ from either Algorithm 1 or 2.
2. Define T such that T (j, k) = σkf̂(λk)ϕ̃N,k(xj), k = −M, · · · ,M and

j = −J, · · · , J . Note that T (j, 0) = 0. Also let f̂ be the vector of Fourier

coefficients f̂(λk), k = −M, · · · ,M .
3. Define p as the vector with elements [f ](xj), j = 0, · · · , J . We seek p as

the solution to
minimize

p
‖p‖`1 + µ‖p−Tf̂‖`2 (40)

Figure 11 displays the results using Algorithm 3 for approximating [f2](x).
We chose µ = 10 for each performance of Algorithm 3.
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(a) jittered sampling (N = 100)
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(b) quadratic sampling (N = 40)
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(c) log sampling (N = 25)

Fig. 11 Approximation of [f2](x) using Algorithms 1 & 3 (top row) and Algorithms 2 & 3
(bottom row) with three sampling patterns and M = 100.

As observed in Figure 11, although using Algorithm 3 improves the edge
approximation, there are still large side lobes that occur in the neighborhoods



Detecting edges from non-uniform Fourier data using Fourier frames 19

of the jumps. This is easily explained by the fidelity term in Algorithm 3.
Namely, we are seeking a solution [f ] that most closely matches the projection

of
∑L
l=1[f ](ξl)hξl(x), where L is the number of edges, onto the space spanned

by the Fourier frame elements given by (15). As such, the solution to (33) will
be oscillatory. Since hξ is typically (essentially) compactly supported, in [28]
it was noted that a better match to the jump function used in the fidelity (`2)
term could be obtained using the approximation

Wσ
M ∗ [f ] ≈ SσM (f), (41)

where SσM (f) is defined in (7) for some admissible σ. Here the waveform kernel

Wσ
M (x) =

1

γσM

M∑
k=−M

σk
cos kx

k
, (42)

where γσM is a normalization constant, is the Fourier partial sum approximation
of h0(x) given uniform Fourier data, [28,30]. Observe that Wσ

M (x) in (42) is
equivalent to the left hand side of (21) when λk = k. Thus to determine the
corresponding waveform kernel for non-uniform Fourier data, we rewrite the
left hand side of (21) using (22) as

Wσ
N(M)(x) =

1

γσN(M)

∑
|k|≤M

σkr̂(λk)ϕ̃N,k(x)

=
1

γσN(M)

∑
|k|≤M

∑
|l|≤N

σkr̂(λk)bl,keπilx, (43)

where γσN(M) =
∑
|k|≤M

∑
|l|≤N bl,kσkr̂(λk) is the normalization constant.

Analogously to (41), we now write

Wσ
N(M) ∗ [f ] ≈ TσM (f). (44)

To satisfy (41), we require their Fourier coefficients to be “close”, that is

1

γσN(M)

∑
|k|≤M

bl,kσkr̂(λk)[̂f ](l) ≈
∑
|k|≤M

bl,kσkf̂(λk), |l| ≤ N. (45)

Let f̂ = (f̂(λk) : |k| ≤ M) denote the set of non-harmonic measurements
of the Fourier data and suppose σ is determined from either Algorithm 1 or
Algorithm 2. We define

Σ := diag

(
1

γσN(M)

∑
|k|≤M

bl,kσkr̂(λk) : |l| ≤ N
)
, (46)

and

y := (
∑
|k|≤M

bl,kσkf̂(λk) : |l| ≤ N). (47)
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We also denote F ∈ C(2N+1)×(2J+1) as the discrete non-harmonic Fourier
matrix with elements

Fkj = exp [ikxj ] , k = −N, . . . , N ; j = −J, . . . , J. (48)

Using (46), (47) and (48) for the requirement (45), we arrive at the following
alternative algorithm:5

Algorithm 4 [Reconstruction of [f ](x) from non-uniform Fourier data.] Given

2M + 1 Fourier coefficients of a piecewise smooth function, f̂(λk) in (4):

1. Determine σ from either Algorithm 1 or 2.
2. Construct Σ, y, and F from (46), (47) and (48).
3. Define p as the vector with elements [f ](xj), j = −J, · · · , J . We seek p as

the solution to

min
p
‖p‖`1 + µ‖ΣFp− y‖`2 (49)

Figure 12 displays the results using Algorithm 4 for approximating [f2](x).
We chose µ = 100 for each performance of Algorithm 4.
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(a) jittered sampling (N = 100)
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(b) quadratic sampling (N = 40)
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(c) log sampling (N = 25)

Fig. 12 Approximation of [f2](x) using Algorithms 1 & 4 (top row) and Algorithms 2 & 4
(bottom row) with three sampling patterns and M = 100.

5 Algorithm 4 closely follows the one provided in [28] for non-uniform coefficients, although
the values obtained in (46) and (47) are substantially refined by Algorithms 1 and 2.
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We note that Algorithm 4 yields better results than the algorithm devel-
oped in [28] since the non-uniformity of the samples is considered both in the
design of the concentration factor and in the jump function reconstruction.
By contrast, the algorithm in [28] uses convolutional gridding with density
compensation factors given by the trapezoidal rule for the jump function re-
construction, which admits additional interpolation errors, [31]. It also employs
a concentration factor designed to be admissible for the corresponding uniform
case, i.e. (7). Thus Algorithm 4 is particularly effective when the samples be-
come increasingly non-uniform. This will be critical in the two-dimensional
applications discussed below.

5 Edge detection for two-dimensional non-uniform Fourier data

We now discuss how to extend Algorithm 2 to two-dimensional non-uniform
Fourier data. Specifically, we will consider a piecewise smooth function f :
[−1, 1]2 → R and try to recover its edge map from given non-uniform Fourier
data:

f̂(λk) =

∫ 1

−1

∫ 1

−1
f(x, y)e−πiλk,1xe−πiλk,2ydxdy,

where {λk = (λk,1, λk,2) : |k| ≤ M} ∈ R2. We adopt the convention |k| ≤ M
to denote |k1| ≤M and |k2| ≤M . We will consider the following non-uniform
sampling patterns.

1. Jittered sampling:

λj = j + εj ,

where εj is a small two-dimensional perturbation. Typically, we assume
εj ∈ [−1/4, 1/4]2. Note that the jittered sampling case constitutes a frame
in L2[−1, 1] when the perturbations lie in such a range, [29].

2. Rosette sampling:

λj = kmax(cos(w1tj) cos(w2tj), cos(w1tj) sin(w2tj)),

where kmax, w1, w2 are positive constants and tj ∈ [0, T ] for some T > 0.
3. Spiral sampling:

λj = (cθj cos(2πθj), cθj sin(2πθj)),

where c > 0 and θj > 0.
4. Polar sampling:

λj = (crj1 cos(θj2), crj1 cos(θj2)),

where c > 0, rj1 = j1
R ∈ [−1/2, 1/2), and θj2 = πj2

T ∈ [−π/2, π/2).
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Fig. 13 Examples of various sampling patterns
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Fig. 14 The edge map of a synthetic phantom.

We display an example for each of the above sampling patterns in Figure
13.

We will test our algorithm on the classical Shepp Logan phantom, seen in
Figure 14.

A two-dimensional inverse frame operator approximation technique was
developed in [26]. As in the one-dimensional case, we choose the Fourier basis
ψl(x) = eπil·x to be the corresponding admissible frame, so that f can be

approximated from its non-uniform Fourier data f̂(λk) as

TMf(x, y) =
∑
|l|≤N

∑
|k|≤M

f̂(λk)bl,keπil1xeπil2y, (50)

where B = [bl,k]|l|≤N,|k|≤M is the Moore-Penrose pseudo-inverse of Ψ = [4 sinc(λk,1−
l1) sinc(λk,1 − l1)]|k|≤M,|l|≤N . It was shown in [26] that for f smooth enough
and M and N satisfying a certain relationship, ‖TMf − f‖ → 0 uniformly.

As in [6,7,13], we use a line-by-line approach to determine the edges in each
direction while holding the other direction fixed. In particular, we construct

T xMf(x, ys) =
∑
|l|≤N

∑
|k|≤M

f̂(λk)bl,keπil1xeπil2ys

and
T yMf(xt, y) =

∑
|l|≤N

∑
|k|≤M

f̂(λk)bl,keπil1xteπil2y,

for each ys ∈ [−1, 1] and xt ∈ [−1, 1], and then apply Algorithm 3 with Algo-
rithm 2 as the initial step on each directional approximation. The directional
edge maps are then combined as

TσM [f ](xt, ys) = max
xt,ys

(|T x,σM f(xt, ys)|, |T y,σM f(xt, ys)|) (51)
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or

TσM [f ](xt, ys) =
√

(T x,σM f(xt, ys))2 + (T y,σM f(xt, ys))2 (52)

to form the final edge map of f . Although there were no noticeable differences
in our experiments using (51) or (52), it is possible that further post-processing
or other data considerations may favor one to the other. Further, TσM [f ](xt, ys)
can be constructed using other combinations as well.

It is important to note that our method does not require prior reconstruc-
tion of the image for the purposes of edge detection. As was pointed out in
[22,24], the oscillations produced in the Fourier reconstruction of the image
makes it difficult to employ a pixel based edge detector, while filtering the re-
construction causes some edges to go unidentified. We demonstrate this again
in Figure 15, where we compare our edge detection algorithm to the Canny
edge detector, [9], for the Shepp Logan phantom on the four different sampling
schemes. In the latter case, the physical image is first obtained from the non-
uniform Fourier data using (50). We note that the method developed in [22] is
essentially an example of using (26) in two dimensions with a separable func-
tion h. The convolutional gridding machinery from [12] is then employed. Thus
it does not benefit from the more accurate frame theoretic NFFT developed
in [26], nor from the refinement of the concentration factor design presented
here.

(a) Jittered (N =
100

(b) Rosette (N =
50)

(c) Spiral (N = 60) (d) Polar (N = 45)

Fig. 15 Edge maps using the Canny edge detection method (top row) on the reconstructed
image and a line-by-line approach for Algorithms 2 & 4 (bottom row) for various two-
dimensional non-uniform sampling patterns. Here M = 100.

6 Conclusion

In this investigation we presented a new methodology for constructing an
edge map from non-uniform Fourier data. Our algorithm leads to marked
improvement over those developed in [14,15,22,28]: Higher order concentration
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factors are designed based on the sampling trajectory of the given Fourier data,
and l1 regularization is used to pinpoint the edges. Our algorithm is effective in
one and two dimensions, especially for sampling patterns that are prototypical
of those seen in magnetic resonance imaging. Further thresholding, designed
for any particular application, can be employed as needed. Our results also
demonstrate that our method is robust with respect to noise.

It is interesting to note that the rosette, spiral, and polar sampling pat-
terns considered in this paper do not form Fourier frames, since in each case
we assume that the finite set of non-uniform Fourier data comes from an in-
finite Fourier frame with common frame bounds that are independent of the
number of samples. Nevertheless, using the frame theoretic approach is effec-
tive for these data sets. Future work will include testing our algorithm on MRI
and SAR data. In each case, the algorithm will be adapted to the particular
constraints on the data acquisition, specifically in designing the concentration
factors.
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