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1 Introduction

This project uses the results of the following papers:

1. D. Denker and A. Gelb, Edge Detection of Piecewise Smooth Functions from Under-Sampled
Fourier Data Using Variance Signatures, SIAM Journal on Scientific Computing, 39:2 559-
592 (2017).

2. R. Archibald, A. Gelb, and R. Platte, Image Reconstruction from Undersampled Fourier Data
Using the Polynomial Annihilation Transform, Journal of Scientific Computing, 67 432–452,
(2016), DOI 10.1007/s10915-015-0088-2.

3. W. Stefan, R. Renaut and A. Gelb Improved Total Variation-type Regularization Using
Higher-order Edge Detectors, SIAM Journal on Imaging Sciences, 3:2 232-251 (2010).

4. R. Archibald, A. Gelb, and J. Yoon, Polynomial Fitting for Edge Detection in Irregularly
Sampled Signals and Images, SIAM Journal on Numerical Analysis, 43, 259–279 (2005).

5. G. Wasserman, R. Archibald and A. Gelb, Image Reconstruction from Fourier Data Using
Sparsity of Edges, Journal of Scientific Computing, 65:2 533–552, (2015).

2 Problem set up

Let f(x) be a piecewise smooth function on an interval [−1, 1]. Assume we have M vectors
g1, · · · ,gM. Each gm approximates f(x) at a set of grid points xj = −1 + 2j

N , j = 0, · · · , N .
We can assume that f is periodic, although in general this is not needed. Each entry of gm is
given by f(xj) + εj , where εj is white noise. Part of this experiment will be to see how robust our
algorithm will be with respect to signal to noise ratio (SNR).

Our overall goal is to recover the true function f(x) on any set of grid ponts (we can use the
same grid points xj for now). We will break this up into different tasks. Part 4 and Part 5 are
optional. Groups can work on Part 1 and Part 2 together, and then split off to work on various
aspects of Part 3, Part 4, and Part 5. As a Part 6, you can come up with a completely different
application, as long as you can justify it in some real world scenario. (There is actually another
variation on this problem that will be described in Project 2, which I will be posting soon.)

I encourage you to consult each other when working on this project, especially in terms of
programming. Remember, everyone is coming into this with different backgrounds, so you will
learn a lot from talking together. Don’t hesitate to use canned packages, no one should reinvent
the wheel!
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• Part 1: First assume that M = 1. Use the polynomial annihilation method (see Archibald,
Gelb, and Yoon) to recover the jump function [f ](x) of piecewise smooth function f(x) at
grid points xj . You should choose several different piecewise smooth functions, with varying
amounts of noise (SNR) and resolution (N). You should also choose different orders of he
polynomial annihilation method. Compare different results. When does the method work
well? What causes the method to break down?

• Part 2: We still assume that M = 1. In (Archibald, Gelb, and Platte) and (Wasserman,
Archibald, and Gelb) the polynomial annihilation method is used as an `1 regularization
transform operator. In these papers, the given data are assumed to be Fourier samples, f̂ ,
so that the solution f should minimize ||Ff − f̂ || where F is the Fourier transform matrix.
Here, however, we assume we are given grid point data so we use F = I, the identity matrix,
and the given data are given by g above. (A similar framework is in (Stefan, Renaut and
Gelb).) Use the results from Part 1 to recover the underlying function f at the grid points
xj , j = 0, · · · , N .

• Part 3: Now starts the new stuff! Suppose now M > 1 (you will vary M as part of the
project). Because each vector is supposed to measure the same function, f , we can assume
that the data set {gm}Mm=1 should have features in common. In particular, they should all
have the same set of edges, and since the underlying piecewise smooth there are only a finite
number of edges, that is, the function f has sparse representation in the edge domain. This
is the concept used for M = 1 as well, but here we are going to see if there is an advantage
to using joint sparsity, that is, these collected data sets are highly correlated in their sparsity
domain. Some questions to ask: How large should M be for it to be useful? If you have large
M , how small can N be? Is there an optimal choice for M and N in terms of accuracy and
efficiency? How do M and N vary with the amount of noise? How robust is the method
to noise? Is there a better way to choose the parameters (e.g. weights and optimization
paramaters) for the minimization scheme? Below I sketch some useful ideas. It is up to you
to see what to do.

• Part 4: Applications: This is some modification of the cocktail party problem. You have
several different audio recordings of some conversations, and you (perhaps you are a spy!)
want to here one particular conversation. This conversation is common to all of the audio
recordings, but there could be a lot of noise in each of them. Come up with an application
(a simplified version) and try out this technique. Observe that you can actually use different
data collection modalities, for example perhaps g1 is Fourier data of f while g2 is pixel data,
as above.

• Part 5: Applications: Another problem is that the data g is blurry, that is g = k ∗ f + ε
where k is a blur operator and ∗ means convolution. When data are blurry, it can become
more difficult to recover edges. Do the multiple vector measurements help in this case?

3 Background information for multiple measurement problem

Let f ∈ RN denote a vector (discrete signal) to be recovered. We denote the objects to be recovered
by f1, . . . ,fM , where M ∈ N is the total number of objects. We can write

F = [f1| · · · |fM ] ∈ RN×M ,
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Measurements of the vectors f1, . . . ,fM are taken according to measurement matricesA1, . . . ,AM ∈
RM×N , giving measurements

gm = Amfm + εm, m = 1, . . . ,M. (3.1)

Here ε1, . . . , εM are noise vectors. Often it will be the case that

A = A1 = · · · = AM ,

although this condition is not necessary for the technique. (In our sample problem Am = I, the
identity matrix, for each m = 1, · · · ,M .) In this latter case, note that we may rewrite (3.1) as

G = AF + Ω,

where
G = [g1| · · · |gM ] ∈ RN×M , Ω = [ε1| · · · |εM ] ∈ RN×M .

We write ‖·‖p for the `p-norm on RN , where p ≥ 1. As is conventional, we write ‖·‖0 for the

`0-norm, i.e.
‖h‖0 = |supp(h)| .

Here supp(h) is the support of h, defined by

supp(h) = {i : hi 6= 0}, h = (hi)
N
i=1.

Given a vector w = (wi)
N
i=1 of positive weights, we define the weighted `1w-norm as

‖h‖1,w =
N∑
i=1

wi|hi|.

One can also define weighted `pw-norms for p 6= 1, however this shall not be needed for the paper.
If H = (him)N,M

i,m=1 ∈ RN×M is a matrix, we define the `p,q-norms by

‖H‖p,q =

 N∑
i=1

(
M∑

m=1

|him|q
)p/q

1/p

.

In particular, if p = q = 2 then

‖H‖2,2 = ‖H‖F =

(
N∑
i=1

M∑
m=1

|him|2
)1/2

,

is just the Frobenius norm of H. We also define the weighted `1,2w -norm by

‖H‖1,2,w =

N∑
i=1

wi

(
M∑

m=1

|him|2
)1/2

.
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4 Description of the variance joint sparsity `1 method

Let f1, . . . ,fM ∈ RN be the sequence of vectors to recover and

gm = Amfm + εm, m = 1, . . . ,M,

the vector of measurements. We shall assume the a priori noise bound

‖εm‖2 ≤ ηm, m = 1, . . . ,M,

for known noise levels η1, . . . , ηM .
For the variance joint sparsity `1 (VJSL1) method, we shall make the following assumptions:

1. The supports of the vectors are similar, i.e. supp(h1) ≈ supp(h2) ≈ · · · ≈ supp(hM ), where
h is a measureable feature of f (e.g. the jump function [f ] ≈ Pf = h).

2. The coefficients of the vectors are sufficiently distinct. Specifically, the vector v = (vi)
N
i=1 of

pixelwise variances

vi =
1

M

M∑
m=1

(him)2 −

(
1

M

M∑
m=1

him

)2

, i = 1, . . . , N,

is nonzero with supp(v) ≈
⋃M

m=1 supp(hm).

We note in passing that VJSL1 will not fail when either of these assumptions does not hold.
Rather, it will just not convey any benefit over individual recovery of the hm. The first assumption
is essentially necessary for any technique that seeks to exploit joint sparsity.

The VJSL1 method now proceeds in four steps:

Step 1: In the first step, we recover the vectors separately using standard `1 minimization:

f̌m ∈ argmin
z∈RN

‖Pz‖1 subject to ‖Amz − gm‖2 ≤ ηm, m = 1, . . . ,M.

Step 2: In the second step, we compute the pixel-wise variance of the vectors ȟm = (ȟim)Ni=1,
m = 1, . . . ,M , computed in the first step. That is, we compute v̌ = (v̌i)

N
i=1, where

v̌i =
1

M

M∑
m=1

(ȟim)2 −

(
1

M

M∑
m=1

ȟim

)2

, i = 1, . . . , N.

Step 3: The two assumptions made above suggest that v should carry information about the shared
support of the hm. Specifically, v̌i should be large when the index i belongs to this support, and
v̌i ≈ 0 otherwise. In the third step, we compute a vector of nonnegative weights w = (wi)

N
i=1 based

on this information, where 0 ≤ wi ≤ 1. In particular, we choose wi ≈ 0 when v̌i is large and wi ≈ 1
when v̌i ≈ 0.

Step 4: Having defined the vector w, we in the final step we solve M weighted `1 minimization
problems to get the final reconstruction of the vectors fm:

f̂m ∈ argmin
z∈RN

‖Pz‖1,w subject to ‖Amz − gm‖2 ≤ ηm, m = 1, . . . ,M.
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Note that this method is parallelizable, since the computationally-intensive steps (Steps 1 & 4) each
require the solution of M separate (weighted) `1-minimization problems. Steps 2 & 3 are require
communications between cores, but are extremely cheap in comparison.

4.1 Choice of weights

In order to implement VJSL1, one needs to specify the weights w. One possible option is to use
reciprocal weights, which is given as follows:

Fix a parameter ε > 0, and define the weights by

wi =
1

vi + ε
, i = 1, . . . , N.

This strategy can adapt to differing scales in the variance vector v.
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