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Simplification with Symmetric Proposals
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Monte Carlo Summary

Big Picture:

1. We want to estimate expectations of the form

E[h(X )] =
Z

⌦x

h(x)f (x)dx

2. In high dimensions or for complicated h(x), Monte Carlo
methods can be advantageous

E[h(X )] ⇡ 1
N

NX

k=1

h
⇣
x (k)

⌘

3. Markov chain Monte Carlo is a way of generating samples

x (k) using only unnormalized density evaluations.
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Simple Test Problem
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MC and MCMC on test problem
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MC and MCMC on test problem

Question
Can we understand

MCMC convergence

choose qc to

converge as fast

as possible
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Breakout Exercise

Recall the Metropolis-Hastings MCMC algorithm:

1. Choose an initial point z0.

2. For i = 1 . . .N:

I Propose a point z 0 ⇠ q(z |zi�1)
I Compute the acceptance ratio

� =
f (z 0|cobs)
f (zi�1|cobs)

q(zi�1|z 0)
q(z 0|zi�1)

I Set xi = x 0 with probability ↵ = min{1, �}, else xi = xi�1.

Question:

What two parts of this algorithm cause the chain to be

correlated?

why might Xl Xldt be similar



Breakout Solution

Metropolis-Hastings MCMC algorithm:

1. Choose an initial point z0.

2. For i = 1 . . .N:

I Propose a point z 0 ⇠ q(z |zi�1)
I Compute the acceptance ratio

� =
f (z 0|cobs)
f (zi�1|cobs)

q(zi�1|z 0)
q(z 0|zi�1)

I Set xi = x 0 with probability ↵ = min{1, �}, else xi = xi�1.
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Central Limit Theorem (CLT)

The mean µ̂N of independent samples X
(k)
converges to a

Gaussian distribution
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Central Limit Theorem (CLT)
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Autocorrelation Functions
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Integrated Autocorrelation Function and CLT
Time
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Minimizing MCMC Error

Goal Minimize 2 IAC 1

choosing the
proposal q

choose variance
of Gaussian prop

find non gaussian
proposal


