Dartmouth College

Mathematics 81

The following exercises are to remind you of (or sharpen your skills regarding) material from Math 71. First, I give a few results which you may use without proof, but if they are unfamiliar, you should read the relevant material in your text.

Let $f \in \mathbb{Z}[x] . f$ is called primitive if and only if the gcd of its coefficients is 1 . For example $2 x^{2}-6 x+3$ is primitive in $\mathbb{Z}[x]$. The following two theorems are essentially (if not in fact) equivalent to Gauss's lemma over \mathbb{Q} :
Theorem: Let $f \in \mathbb{Z}[x]$. Then f is irreducible in $\mathbb{Z}[x]$ if and only if f is primitive in $\mathbb{Z}[x]$ and irreducible in $\mathbb{Q}[x]$.
Theorem: Let $f \in \mathbb{Z}[x]$, and suppose that $f=g h$ for two polynomials $g, h \in \mathbb{Q}[x]$. Then $f=g_{0} h_{0}$ for polynomials $g_{0}, h_{0} \in \mathbb{Z}[x]$ with $\operatorname{deg}(g)=\operatorname{deg}\left(g_{0}\right)$ and $\operatorname{deg}(h)=\operatorname{deg}\left(h_{0}\right)$. In particular g_{0} and h_{0} are integer scalar multiples of g and h respectively.

Here are the problems to work on:

1. The following exercise is meant to refresh your memory about ideals and quotient rings. For each of the ideals I listed below, determined whether the ring $\mathbb{Z}[x] / I$ has zero divisors, is an integral domain, or is a field (and hence whether the ideal I is not prime, prime, or maximal). If the quotient is not an integral domain, find zero divisors. If the quotient is not a field, then I is not maximal, so find a maximal ideal M with $I \subsetneq M$, and justify that M is maximal.
Hint: You may use without proof the very handy fact that if $f \in \mathbb{Z}[x]$ and $m \in \mathbb{Z}$, then $\mathbb{Z}[x] /(m, f(x)) \cong(\mathbb{Z} / m \mathbb{Z})[x] /(\bar{f}(x))$, where $\bar{f}(x)$ is the polynomial in $(\mathbb{Z} / m \mathbb{Z})[x]$ obtained from f by reducing the coefficients modulo m.
(a) $I=\left(x^{3}+2\right)$
(b) $I=\left(5, x^{3}+2\right)$
(c) $I=\left(7, x^{3}+2\right)$
2. Let $\mathbb{F}_{11}=\mathbb{Z}_{11}=\mathbb{Z} / 11 \mathbb{Z}$ be a (actually the) field with 11 elements, and set $K=\mathbb{F}_{11}[x] /\left(x^{2}+1\right)$ and $L=\mathbb{F}_{11}[y] /\left(y^{2}+2 y+2\right)$.
(a) Show that K and L are both fields with 121 elements.
(b) For $p(x) \in \mathbb{F}_{\underline{11}[x]}$, let $\underline{\overline{p(x)}}$ denote its image in K. Show that the map from $K \rightarrow L$ which takes $p(x) \mapsto p(y+1)$ is well-defined and a ring homomorphism. Finally show that the map is an isomorphism.
