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Naming of parts

Every person had in the beginning one only proper name, except the savages
of Mount Atlas in Barbary, which were reported to be both nameless and
dreamless. .

William Camden

In this first chapter we meet the main subject-matter of model theory:
structures.

Every mathematician handles structures of some kind - be they modules,
groups, rings, fields, lattices, partial orderings, Banach algebras or whatever.
This chapter will define basic notions like ‘element’, ‘homomorphism’,
‘substructure’, and the definitions are not meant to contain any surprises. The
notion of a (Robinson) ‘diagram’ of a structure may look a little strange at
first, but really it is nothing more than a generalisation of the multiplication
table of a group.

Nevertheless there is something that the reader may find unsettling. Model
theorists are forever talking about symbols, names and labels. A group
theorist will happily write the same abelian group multiplicatively or addi-
tively, whichever is more convenient for the matter in hand. Not so the model
theorist: for him or her the group with ‘-’ is one structure and the group with
‘+’ is a different structure. Change the name and you change the structure.

This must look like pedantry. Model theory is an offshoot of mathematical
logic, and I can’t deny that some distinguished logicians have been pedantic
about symbols. Nevertheless there are several good reasons why model
theorists take the view that they do. For the moment let me mention two.

In the first place, we shall often want to compare two structures and study
the homomorphisms from one to the other. What is a homomorphism? In the
Particular case of groups, a homomorphism from group G to group H is a
Mmap that carries multiplication in G to multiplication in H. There is an
PbVious way to generalise this notion to arbitrary structures: a homomorph-
1sm from structure A to structure B is a map which carries each operation of
A to the operation with the same name in B.

Secondly, we shall often set out to build a structure with certain properties.
One of the maxims of model theory is this: name the elements of your
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structure first, then decide how they should behave. If the names are well
chosen, they will serve both as a scaffolding for the construction, and as raw
materials.

Aha — says the group theorist = I see you aren’t really talking about written
symbols at all. For the purposes you have described, you only need to have
formal labels for some parts of your structures. It should be quite irrelevant
what kinds of thing your labels are; you might even want to have uncountably
many of them.

Quite right. In fact we shall follow the lead of A. I. Mal’tsev and put no
restrictions at all on what can serve as a name. For example any ordinal can
be a name, and any mathematical object can serve as a name of itself. The
items called ‘symbols’ in this book need not be written down. They need not
even be dreamed.

1.1 Structures

We begin with a definition of ‘structure’. It would have been possible to set
up the subject with a slicker definition — say by leaving out clauses (1.2) and
(1.4) below. But a little extra generality at this stage will save us endless
complications later on.

A structure A is an object with the following four ingredients.

(1.1) A set called the domain of A, written dom(A) or dom A
(some people call it the universe or carrier of A). The
elements of dom (A) are called the elements of the structure
A. The cardinality of A, in symbols |A|, is defined to be the
cardinality |dom A| of dom (A).

(1.2) A set of elements of A called constant elements, each of
which is named by one or more constants. If ¢ is a constant,
we write ¢ for the constant element named by c.

(1.3) For each positive integer n, a set of n-ary relations on
dom(A) (i.e. subsets of (dom A)"), each of which is named
by one or more n-ary relation symbols. If R is a relation
symbol, we write R* for the relation named by R.

(1.4) For each positive integer n, a set of n-ary operations on
dom(A) (i.e maps from (domA)" to dom (A)), each of
which is named by one or more n-ary function symbels. If F
is a function symbol, we write F4 for the function named by
7,

Except where we say otherwise, any of the sets (1.1)-(1.4) may be empty. As
mentioned in the chapter introduction, the constant, relation and function
‘cvmbols’ can be anv mathematical objects, not necessarily written symbols;
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1.1 Structures 3

but for peace of mind one normally assumes that, for instance, a 3-ary
relation symbol doesn’t also appear as a 3-ary function symbol or a 2-ary
relation symbol. We shall use capital letters A, B, C, . . . for structures.

Sequences of elements of a structure are written @, b etc. A tuple in A (or
from A) is a finite sequence of elements of A; it is an n-tuple if it has length
n. Usually we leave it to the context to determine the length of a sequence or
tuple.

This concludes the definition of ‘structure’.

Example 1: Graphs. A graph consists of a set V (the set of vertices) and a set
E (the set of edges), where each edge is a set of two distinct vertices. An
edge {v, w} is said to join the two vertices v and w. We can picture a finite
graph by putting dots for the vertices and joining two vertices v, w by a line
when {v, w} is an edge:

One natural way to make a graph G into a structure is as follows. The
elements of G are the vertices. There is one binary relation RC: the ordered
pair (v, w) lies in RC if and only if there is an edge joining v to w.

Example 2: Linear orderings. Suppose < linearly orders a set X. Then we can
make (X, =) into a structure A as follows. The domain of A is the set X.
There is one binary relation symbol R, and its interpretation R is the
ordering <. (In practice we would usually write the relation symbol as <
rather than R.)

Example 3: Groups. We can think of a group as a structure G with one
constant 1 naming the identity 19, one binary function symbol - naming the
group product operation -G, and one unary function symbol ~! naming the
nverse operation ("°. Another group H will have the same symbols 1, -,

i : ; ; : ;
; then 17 is the identity element of H, - ¥ is the product operation of H,
and so on,

Example 4: Vector spaces. There are several ways to make a vector space into
a structure, but here is the most convenient. Suppose V is a vector space over
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a field of scalars K. Take the domain of V to be the set of vectors of V.
There is one constant element 0, the origin of the vector space. There is one
binary operation, +", which is addition of vectors. There is a 1-ary operation
_V for additive inverse; and for every scalar k there is a 1-ary operation kY
to represent multiplying a vector by k. Thus each scalar serves as a l-ary
function symbol. (In fact the symbol ‘~* is redundant, because —" is the
same operation as (—1)¥.)

When we speak of vector spaces below, we shall assume that they are
structures of this form (unless anything is said to the contrary). The same
goes for modules, replacing the field K by a ring.

Two questions spring to mind. First, aren’t these examples a little
arbitrary? For example, why did we give the group structure a symbol for the
multiplicative inverse -1 but not a symbol for the commutator [, ]? Why did
we put into the linear ordering structure a symbol for the ordering <, but not
one for the corresponding strict ordering <?

The answer is yes; these choices were arbitrary. But some choices are more
sensible than others. We shall come back to this in the next section.

And second, exactly what is a structure? Our definition said nothing about
the way in which the ingredients (1.1)-(1.4) are packed into a single entity.

True again. But this was a deliberate oversight — the packing arrangements
will never matter to us. Some writers define A to be an ordered pair
(dom(A), f) where f is a function taking each symbol S to the correspond-
ing item S4. The important thing is to know what the symbols and the
ingredients are, and this can be indicated in any reasonable way.

For example a model theorist may refer to the structure

(R, +, -, +,0,1,=).
With some common sense the reader can guess that this means the structure
whose domain is the set of real numbers, with constants 0 and 1 naming the
numbers 0 and 1, a 2-ary relation symbol =< naming the relation =, 2-ary
function symbols + and + naming addition and multiplication respectively,
and a 1-ary function symbol naming minus.

Signatures
The signature of a structure A is specified by giving

(1.5) the set of constants of A, and for each separate n > 0, the set
of n-ary relation symbols and the set of n-ary function
symbols of A.
We shall assume that the signature of a structure can be read off uniquely
from the structure.
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The symbol L will be used to stand for signatures. Later it will also stand
for languages — think of the signature of A as a kind of rudimentary language
for talking about A. If A has signature L, we say A is an L-structure.

A signature L with no constants or function symbols is called a relational
signature, and an L-structure is then said to be a relational structure. A
signature with no relation symbols is sometimes called an algebraic signature.

Exercises for section 1.1

1. According to Thomas Aquinas, God is a structure G with three elements ‘pater’,
‘filius’ and ‘spiritus sanctus’, in a signature consisting of one asymmetric binary
relation (‘relatio opposita’) R, read as ‘relatio originis’. Aquinas asserts also that the
three elements can be uniquely identified in terms of R®. Deduce — as Aquinas did -
that if the pairs (parter, filius) and (pater, spiritus sanctus) lic in RC, then exactly one
of the pairs (filius, spiritus sanctus) and (spiritus sanctus, filius) lies in RC,

2. Let X be a set and L a signature; write x(X, L) for the number of distinct
L-structures which have domain X. Show that if X is a finite set then x(X, L) is
either finite or at least 2%,

1.2 Homomorphisms and substructures

The following definition is meant to take in, with one grand sweep of the
arm, virtually all the things that are called ‘homomorphism’ in any branch of
algebra.

Let L be a signature and let A and B be L-structures. By a homomor-
phism f from A to B, in symbols f: A — B, we shall mean a function f from
dom (A) to dom (B) with the following three properties.

(2.1)  For each constant ¢ of L, f(c") = cF.
(2.2)  For each n >0 and each n-ary relation symbol R of L and
n-tuple @ from A, if @ € R* then fa e RE.
(2.3)  For each n >0 and each n-ary function symbol F of L and
n-tuple a@ from A, f(FA(a)) = F8(fa).
(f ais (ag,. . .,a, ;) then fa means (fag, . . ., fa,_1); cf. Note on notation.)
By an embedding of A into B we mean a homomorphism f: A — B which is
'njective and satisfies the following stronger version of (2.2).
(24)  For each n >0, each n-ary relation symbol R of L and each
n-tuple a from A, @ € R* < fa € RE.
An isomorphism is a surjective embedding: Homomorphisms f: A — A are

Cal.led endomorphisms of A. Isomorphisms f: A— A are called automor-
Phisms of 4.



