
Math 8
Fall 2019

Sample Solutions to Practice Problems for Exam II

1. The curve in the picture is the graph of the function y = x3− 3x in the xy-plane. The
picture includes the region of the plane −2 ≤ x ≤ 2, −2 ≤ y ≤ 2.

(a) Give a function ~r(t) parametrizing this curve.

Solution: ~r(t) = 〈t, t3 − 3t〉. (This parametrizes the curve oriented in the direc-
tion from left to right.)

(This is only one of many possibilities. For example, ~p(t) = 〈−t,−t3 + 3t〉
parametrizes the same curve, but oriented from right to left.)

(b) For your function ~r, find

∫ 1

0

~r ′(t) dt.

Solution:

∫ 1

0

~r ′(t) dt = ~r(1)− ~r(0) = 〈1,−2〉.

(c) Without calculating the unit tangent vector at all points, find all points on the

curve at which the unit tangent vector ~T is parallel to the x-axis. For your
parametrization, what is the value of ~T at those points?

Solution: ~T is in the same direction as ~r ′(t) = 〈1, 3t2 − 3〉, and that is parallel
to the x-axis when 3t2−3 = 0, or when t = ±1, at the points (−1, 2) and (1,−2).

For this parametrization, ~T = 〈1, 0〉 at those points. (For a parametrization

orienting the curve from right to left, we would have ~T = 〈−1, 0〉.)
Alternatively, ~T is parallel to the x-axis exactly when the graph y = x3 − 3x has

a horizontal tangent line, which is when the derivative
dy

dx
equals zero.

(d) Without calculating the unit normal vector at all points, find all points on the

curve at which the unit normal vector ~N is equal to 〈0, 1〉.
Explain your reasoning.
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Solution: Since ~N ⊥ ~T , the only points at which we can have ~N = 〈0, 1〉 are

the two points we found above. Also, ~N points in the direction in which the
curve is bending, which is downward at (−1, 2) and upward at (1,−2). Therefore,
~N = 〈0, 1〉 only at (1,−2).

(e) Assuming your parametrization is the position function of a moving particle, find
the tangential and normal components of the acceleration when the particle is at
the point (1,−2).

These are scalars aT and aN for which we write acceleration as ~a = aT ~T + aN ~N .

Solution: The acceleration is ~r ′′(t) = 〈0, 6t〉. At the point (−1, 2) this is perpen-
dicular to the velocity (by part c), so the tangential component of the acceleration
is 0 and the normal component of the acceleration is the magnitude of the accel-
eration, or, since t = 1 at this point, 6.

(f) When the particle is at the point (1,−2), is its speed increasing, decreasing, or
neither?

Solution: Since the tangential component of the acceleration is zero, the speed
is neither increasing nor decreasing.

(g) Write down an integral that gives the arc length of the portion of this curve where
−1 ≤ x ≤ 1. Do not evaluate this integral.

Solution: The speed is |~r ′(t)| =
√

9t4 − 18t2 + 10, so the arc length is∫ 1

−1

√
9t4 − 18t2 + 10 dt.

2. The curve γ is the intersection of the surfaces x2−2x+4y2+16y = −13 and x+2y−z =
2.

(a) Find a function parametrizing γ.

(b) Find the curvature of γ at the point (1,−1,−3).

Solution:

(a) Complete the square in the first equation to get (x − 1)2 + (2y + 4)2 = 4, or(
x− 1

2

)2

+ (y + 2)2 = 1. Set
x− 1

2
= cos t and y + 2 = sin t, or x = 2 cos t + 1

and y = sin t−2. Use the second equation to solve for z, getting z = x+ 2y−2 =
2 cos t+ 2 sin t− 5:

~r(t) = 〈2 cos t+ 1, sin t− 2, 2 cos t+ 2 sin t− 5〉 .

(b) The point (1,−1,−3) corresponds to t =
π

2
, when cos t = 0 and sin t = 1.

2



We have ~r ′(t) = 〈−2 sin t, cos t,−2 sin t+ 2 cos t〉 so ~r ′
(π

2

)
= 〈−2, 0,−2〉, and

~r ′′(t) = 〈−2 cos t,− sin t,−2 cos t− 2 sin t〉 so ~r ′′
(π

2

)
= 〈0,−1,−2〉.

Now we have

κ =
|~r ′ × ~r ′′|
|~r ′|3

=
| 〈−2, 0,−2〉 × 〈0,−1,−2〉 |

| 〈−2, 0,−2〉 |3
=
| 〈−2, 4,−2〉 |

(2
√

2)3
=

√
3

8

Alternatively, we can find the components of the acceleration. We have

aT ~T = proj~v(~a) =
~a · ~v
~v · ~v

~v =
〈0,−1,−2〉 · 〈−2, 0,−2〉
〈−2, 0,−2〉 · 〈−2, 0,−2〉

〈−2, 0,−2〉 = 〈−1, 0,−1〉

aN ~N = ~a− aT ~T = 〈0,−1,−2〉 − 〈−1, 0,−1〉 = 〈1,−1,−1〉(
ds

dt

)2

κ = aN =
∣∣∣aN ~N

∣∣∣ = | 〈1,−1,−1〉 | =
√

3.

ds

dt
= |~r ′| = |〈−2, 0,−2〉| =

√
8.

Therefore,

κ =
aN(
ds
dt

)2 =

√
3

8

3. TRUE or FALSE? Explain briefly.

Note: If a statement is true, your explanation could be that it is a definition or a
theorem, something that was explicitly stated in the textbook. Otherwise, you should
give a brief explanation of why we know it is true.

If a statement is false, your explanation could be an explanation of why it is not true,
an example of a specific case when it is false, or a correction to make it a true statement.

(a) Suppose a curve γ is defined as the intersection of two given surfaces. If the
curvature κ for γ is computed using two different parametrizations, the answer
will always be the same.

TRUE. This is a theorem.

(b) If ~r(t) parametrizes any curve on the sphere x2 + y2 + z2 = 1, then the derivative
~r ′(t) is always normal to the position vector ~r(t).

TRUE. If |~r| is constant, then ~r ⊥ ~r ′. This is a theorem.

(c) The curve parametrized by ~r(t) = 〈t3, t3, t〉 is not a smooth curve.

FALSE. This is a smooth parametrization, since ~r ′(t) = 〈3t2, 3t2, 1〉 is never zero.
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(d) If a particle travels around a circle, then the normal component of its acceleration
is constant.

FALSE. The curvature κ is constant, but the normal component of acceleration

is

(
ds

dt

)2

κ, which will change if the particle’s speed changes.

(e) Two planes parallel to the same line are parallel.

FALSE. The xz-plane and yz-plane are both parallel to the z-axis, but they are
not parallel to each other.

(f) Two planes perpendicular to the same plane are parallel.

FALSE. The xz-plane and yz-plane are both perpendicular to the xy-plane, but
they are not parallel.

(g) If ~r(t) is the position function for a particle moving in the plane x + y + z = 3,

then the velocity vector ~v(t) is always normal to the vector 〈1, 1, 1〉.
TRUE. The velocity vector is tangent to the path, so parallel to the plane, so
normal to its normal vector.

(h) If ~u, ~v and ~w are nonzero vectors such that ~u ·~v = 0 and ~u× ~w = ~0, then ~v · ~w = 0.

TRUE. From ~u · ~v = 0 we see ~u and ~v are perpendicular, and from ~u× ~w = ~0 we
see ~u and ~w are parallel. Therefore, ~w and ~v are also perpendicular.

4. Find the vector (~i+~j)× (~i−~j).

Solution: We can do this either algebraically or geometrically. Geometrically, ~i + ~j
and ~i − ~j are normal to each other, so the sine of the angle between them is 1, and
each has magnitude

√
2, so the magnitude of their cross product will be the product

of their magnitudes, or 2.

Since they lie in the xy-plane, the cross product is in the direction of either ~k or −~k.
Drawing them and using the right hand rule gives us −~k.

Therefore the answer is 〈0, 0,−2〉.

5. Find the center and radius of the sphere with equation x2 + y2 + z2 − 2x+ 4z = 164.

Solution: Complete the square:

x2 − 2x+ 1− 1 + y2 + z2 + 4z + 4− 4 = 164

(x− 1)2 + y2 + (z + 2)2 = 169 = (13)2.

The center is (1, 0,−2) and the radius is 13.
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6. Find the equation of the line perpendicular to the plane x + 3y + z = 5 and passing
through (1, 0, 6).

Solution: A normal vector to the plane, which gives the direction of the line, is
〈1, 3, 1〉. (The coordinates come from the coefficients of x, y, and z in the equation for
the plane.) An equation for the line is

〈x, y, z〉 = 〈1, 0, 6〉+ t〈1, 3, 1〉.

7. Find the distance between the planes with equations 2x−3y+z = 4 and 4x−6y+2z = 3.
If the distance is 0, find the angle between the planes.

Solution: We can see from the equations that these two planes are parallel and not
the same plane, so we must find the distance between them.

Here is one of many possible methods. The picture shows the two planes, a normal
vector ~n, points P and Q on the planes, and the distance d between the planes.

P

Q

−→
PQ

−→n
d~v

From the picture, the distance d we want is the length of the vector ~v. This vector is

the projection of
−→
PQ in the direction of ~n, and its length is

∣∣∣comp~n(
−→
PQ)

∣∣∣ =
|
−→
PQ · ~n|
|~n|

.

We can find a normal vector from the equations of the planes, say ~n = 〈2,−3, 1〉. We
can find points P and Q on the planes by setting y = z = 0 and using the equations of

the planes to solve for x, giving P = (2, 0, 0) and Q =

(
3

4
, 0, 0

)
, so
−→
PQ =

〈
−5

4
, 0, 0

〉
.

Now

d =
|
−→
PQ · ~n|
|~n|

=

∣∣∣∣ −104√14

∣∣∣∣ =
5
√

14

28
.

Note: If you don’t remember the formula for the component of one vector in the direc-

tion of another, you can use the geometry of the situation to see that d =
∣∣∣−→PQ∣∣∣ | cos θ|,

where θ is the angle between
−→
PQ and the normal vector ~n, and then find cos θ using

the dot product.
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Here is another method: Find an equation for the line through the origin normal to
both planes:

〈x, y, z〉 = t〈2,−3, 1〉 = 〈2t,−3t, t〉.

Find the points where this meets the two planes. For the first plane:

2(2t)− 3(−3t) + t = 4 14t = 4 t =
2

7
〈x, y, z〉 = 〈2t,−3t, t〉 =

〈
4

7
,
−6

7
,
2

7

〉
.

For the second plane:

4(2t)−6(−3t)+2t = 3 28t = 3 t =
3

28
〈x, y, z〉 = 〈2t,−3t, t〉 =

〈
6

28
,
−9

28
,

3

28

〉
.

Now find the distance between these two points. This is the length of the displacement
vector between them,∣∣∣∣〈4

7
,
−6

7
,
2

7

〉
−
〈

6

28
,
−9

28
,

3

28

〉∣∣∣∣ =

∣∣∣∣〈16

28
,
−24

28
,

8

28

〉
−
〈

6

28
,
−9

28
,

3

28

〉∣∣∣∣ =

∣∣∣∣〈10

28
,
−15

28
,

5

28

〉∣∣∣∣ =
5

28
| 〈2,−3, 1〉 | = 5

√
14

28

8. What value of c makes this figure possible?

Solution: We have
−→
CA = 〈2, 0,−c〉 and

−−→
CB = 〈0, 3,−c〉. Their dot product is c2.

Also, their dot product is the product of their magnitudes with the cosine of 60◦, which
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is
√

4 + c2
√

9 + c2
(

1

2

)
=

√
c4 + 13c2 + 36

2
. We set c2 =

√
c4 + 13c2 + 36

2
and solve

for c. (We also use the fact that c > 0, and the quadratic formula.)

c2 =

√
c4 + 13c2 + 36

2

4c4 = c4 + 13c2 + 36

3c4 − 13c2 − 36 = 0

c2 =
13±

√
169 + 432

6
=

13 +
√

601

6

c =

√
13 +

√
601

6
.

9. An object is traveling counterclockwise along the circle x2 + y2 = 1, and its speed
at time t is t2 + 1. At time t = 1 the object is located at the point (0, 1). Find its
acceleration at time t = 1.

Hint: First find the tangential and normal components of the acceleration.

Solution: By the geometry of the situation, the unit tangent vector and unit normal
vector to the object’s path at time t = 1 are ~T = 〈−1, 0〉 and ~N = 〈0,−1〉. The
curvature of a circle of radius 1 is κ = 1.

The tangential component of acceleration is the linear acceleration,

aT =
d2s

dt
=

d

dt

(
ds

dt

)
=

d

dt
(t2 + 1) = 2t

and at time t = 1 we have aT = 2. The normal component of the acceleration is

aN =

(
ds

dt

)2

(κ) = (t2 + 1)2(1) = (t2 + 1)2

and at time t = 1 we have aN = 4.

Therefore the acceleration at time t = 1 is

~a = aT ~T + aN ~N = 2 〈−1, 0〉+ 4 〈0,−1〉 = 〈−2,−4〉 .
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10. By the number of each picture, write the letter of the matching description, equation,
or parametrization. The descriptions, the last two pictures, and the space for your
answers, are on the next page.

1) 2)

3) 4)

5) 6)
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7) 8)

A x2 + y2 + z = 0

B z2 = 1 + x2 + y2

C z2 + x2 = 2− y2

D x2

9
+ (y−2)2

4
+ (z − 3)2 = 1

E 4x− y
3

+ z = 20

F x2

4
+ y2 = 1

G The intersection of x = z and y = sin(x)

H The intersection of x2 + y2 = 2 and z = ey

I The intersection of y2 = z and the plane containing the origin and normal to the
vector ~v = 〈1, 1, 1〉
J The intersection of x = z and z = y2

K ~r(t) = 〈cos(t), sin(t), et〉
L ~r(t) = 〈cos(t), sin(3t), t〉

WRITE YOUR ANSWERS BELOW

Write by the number of each picture the letter of the matching description, equation,
or parametrization:

1) B 2) I 3) A 4) D

5) G 6) F 7) K 8) H
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