
Math 8 Fall 2019
Final Exam Practice Problems

1. Find the limit or show it does not exist.

(a) lim
(x,y)→(0,0)

3xy

x2 + y2
= DNE

Solution: We can show this by showing two different ways (x, y) can approach
(0, 0) along which the function approaches different limits, or showing one way
(x, y) can approach (0, 0) along which the function has no limit.

For this example, as (x, y) → (0, 0) along the x-axis (y = 0), the value of the
function is 0, so the limit approaching in that direction is 0. As (x, y) → (0, 0)

along the line y = x, the value of the function is
3

2
, so the limit approaching in

that direction is
3

2
.

A different way of saying this is that no matter how small a distance ε > 0 from
(0, 0) we choose, there are points (a, a) within that distance at which the function

has value
3

2
, and other points (a, 0) within that distance at which the function

has value 0, so the function cannot possibly be approaching a limit.

(b) lim
(x,y)→(0,0)

3xy2

x2 + y2
= 0

Solution: One way to see this is to write x and y in polar coordinates, as x =
r cos θ and y = r sin θ. Since r is the distance from the origin, as (x, y) → (0, 0)
we have r → 0. Our function is

3xy2

x2 + y2
=

3r cos θr2 sin2 θ

r2 cos2 θ + r2 sin2 θ
= 3r cos θ sin2 θ.

Since the values of cosine and sine are between −1 and 1, and r is positive, we
have

−1 ≤ cos θ sin2 θ ≤ 1

−3r ≤ 3r cos θ sin2 θ ≤ 3r.

As (x, y) → (0, 0), we have −3r → 0 and 3r → 0, so our function approaches 0.
(You may notice that this is an application of the squeeze theorem.)

Another way is to write

3xy2

x2 + y2
= 3x︸︷︷︸
→0

y2

x2 + y2︸ ︷︷ ︸
0≤ y2

x2+y2
≤1

.
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Since we can write our function as the product of a factor that is bounded (in this
case between 0 and 1) and a factor that approaches 0, the function must approach
0.

2. A study of the effectiveness of foam insulation placed giant foam blocks, originally at
a uniform temperature of 80 degrees, into a refrigerated room maintained at 0 degrees,
and studied the function f(x, t), the temperature at a depth x millimeters into the
block after t minutes in the refrigerated room.

In a written homework problem we determined that the partial derivative ft(x, t) repre-
sented the rate of change of temperature with respect to time, and since we expect the
block to be cooling off, we expect this partial derivative to be negative. Likewise, we
determined that the partial derivative fx(x, t) represented the rate of change of temper-
ature with respect to depth into the block, and since we expect warmer temperatures
at greater depth, we expect this partial derivative to be positive.

Shortly after the block is placed into the room, the temperature distribution inside
the block is changing from a uniform temperature distribution, in which all points are
the same temperature, to a temperature distribution in which points deeper into the
block are warmer than points on the surface. Which of the following does this tell us
we should expect?

(Recall that, for example fxt = (fx)t is the rate of change of the partial derivative fx
with respect to time.)

Circle the correct answer:

fxt(x, t) < 0 fxt(x, t) > 0 ftx(x, t) < 0 ftx(x, t) > 0.

Solution: As time goes on we are moving from a uniform distribution where temper-
ature does not change as x changes, or fx(x, t) = 0, to a distribution where deeper
points are warmer, or fx(x, t) > 0. This means that fx(x, t) is increasing with time, so
its derivative with respect to time is positive: fxt(x, t) > 0.

3. Consider the following possible properties of a function f(x, y):

(A.) The plane z = 2x− y is tangent to the graph of f at the point (1, 1, 1).

(B.)
∂f

∂x
(1, 1) = 2,

∂f

∂y
(1, 1) = −1, and f(1, 1) = 1.

(C.) The function f is differentiable at the point (1, 1).

Which of the following are true? Circle all correct answers. Note that by, for example,
(A) =⇒ (B) we mean that if (A) is true then (B) must also be true.

(A) =⇒ (B) (B) =⇒ (A)
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(A) =⇒ (C) (C) =⇒ (A)

(B) =⇒ (C) (C) =⇒ (B)

Solution: By the definition of “differentiable,” a function that has a tangent plane

is differentiable, so (A) =⇒ (C) . This arrow does not go the other way, because f

could be differentiable but have a different tangent plane than the one given.

By the formula for tangent plane we learned, we have (A) =⇒ (B) . This arrow does

not go the other way, because it is possible for a function to have partial derivatives
but not be differentiable. It could be that (B) is true, but f is not differentiable, so f
has no tangent plane at all.

The same reasoning tells us that (B) =⇒ (C) is not true. Because f could be
differentiable but have different partial derivatives than those given in (B), we see that
(C) =⇒ (B) is not true either.

4. Here are the values of the first several derivatives of a function f at x = 3.

derivative value at x = 3

f(3) = f (0)(3) 7
f (1)(3) 0
f (2)(3) 0
f (3)(3) 5
f (4)(3) 2
f (5)(3) -1

(a) Write down the first three nonzero terms of the Taylor series of f centered at x = 3.

Solution: T4(x) = 7 +
5(x− 3)3

3!
+

2(x− 3)4

4!
= 7 +

5(x− 3)3

6
+

(x− 3)4

12

(b) Use part (a) to approximate the value of f(2.8).

Solution: f(2.8) is roughly

T4(2.8) = 7 +
5(2.8− 3)3

6
+

(2.8− 3)4

12
= 7− 0.04

6
+

0.0016

12

5. Give a function parametrizing the circle in the xy-plane with radius 3 and center
(−1, 2).

Solution: There is an infinite number of correct parametrizations, but the simplest is

~r(t) = 〈3 cos(t)− 1, 3 sin(t) + 2〉.
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6. A thin wire is placed along the curve γ parametrized by the function ~r(t) = 〈t2, t, t〉
for 2 ≤ t ≤ 4, where distance is measured in meters. The mass density of the wire at
a point (x, y, z) on the wire is z kilograms per meter.

(a) Suppose that ~r(t) is a position function of a particle traveling along the wire.
What is the speed of the particle at time t = 3? At time t in general?

Solution: The velocity is ~r ′(t) = 〈2t, 1, 1〉 and the speed is |~r ′(t)| =
√

4t2 + 2.

At t = 3 the particle’s speed is
√

38
m

sec
and in general it is

√
4t2 + 2

m

sec
.

(b) Find the approximate length of the portion of the wire between ~r(t) and ~r(t+∆t)
if ∆t is small. (This is the approximate distance traveled by the moving particle
of part (a) between times t and t+ ∆t.)

Solution: This distance can be approximated by the speed of the moving par-

ticle at time t multiplied by the length of time, or
√

4t2 + 2(∆t)m . (This is an

approximation because the particle’s speed will change slightly during that time
interval.)

(c) Find the approximate mass of the portion of the wire between ~r(t) and ~r(t+ ∆t).

Solution: The mass density at the point ~r(t) = 〈t2, t, t〉 is given by the z-
coordinate, or t. To find the mass (in kilograms), multiply the mass density
(in kilograms per meter) times the length (in meters). This is approximately

t
√

4t2 + 2(∆t)kg .

(d) Write down a Riemann sum giving the approximate mass of the wire. Be sure to
explain any variables you use. (If you use symbols like ∆x, ti, or n, what do they
represent?)

Solution: Divide the interval 2 ≤ t ≤ 4 into n-many pieces of length ∆t, and
choose ti in the ith interval. Add up the approximate masses of the pieces:

mass ≈
n∑

i=1

ti
√

4(ti)2 + 2(∆t)kg .
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(e) Write down an integral giving the mass of the wire.

Solution: Take the limit of the Riemann sum as n→∞ to get

mass =

∫ 4

2

t
√

4t2 + 2 dt kg .

7. The size of a washer is determined by three dimensions, its radius a, the radius b of the
hole in the center, and its thickness c. The volume of the washer is given by πa2c−πb2c.
The standard sized washer for a certain application has dimensions a = 8, b = 4, and
c = .5, all in millimeters (mm). One manufacturer’s manufacturing tolerances allow a
and b to differ from the standard by up to .1 mm, and c to differ from the standard by
up to .05 mm.

In order to determine whether to pay more money to get better manufacturing toler-
ances, and therefore less variation in weight, an engineer must estimate how much the
volume of a washer from this manufacturer could differ from the standard volume.

Use differentials to estimate how much the volume of a washer of approximate dimen-
sions a = 8, b = 4, and c = .5, with an error of up to ±.1 in a and b and up to ±.05
in c, could differ from the volume of a washer of exact dimensions a = 8, b = 4, and
c = .5.

Solution: Volume V is a function of the dimensions a, b, and c. The differential is

dV =
∂V

∂a
da+

∂V

∂b
db+

∂V

∂c
dc = (2πac)da− (2πbc)db+ (πa2 − πb2)dc.

We can use this to estimate the possible difference in volume from the standard washer
with dimensions a = 8, b = 4, c = .5,

∆V ≈ (2πac)∆a− (2πbc)∆b+ (πa2 − πb2)∆c = (8π)∆a− (4π)∆b+ (48π)∆c.

Given that
|∆a| ≤ .1 |∆b| ≤ .1 |∆c| ≤ .05

we can estimate that

|∆V | ≈ |(8π)(∆a)− (4π)∆b+ (48π)∆c| ≤

|(8π)(∆a)|+ |(4π)∆b|+ |(48π)∆c| ≤ 8π(.1) + 4π(.1) + 48π(.05) = 3.6π.

The units of ∆V are cubic millimeters, so our estimate is 3.6πmm3 .
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8. The temperature at a point (x, y) in the plane is given by a function f(x, y). The
gradient of f is ∇f(x, y) = 〈x,−y〉.

(a) If the units of x and y are meters and the units of f(x, y) are degrees, what are
the units of the directional derivative D~u(x, y)?

Solution: Degrees per meter.

(b) Find the directional derivative D~uf(3, 4) if ~u points from (3, 4) directly toward
the origin (0, 0).

Solution: ∇f(3, 4) = 〈3,−4〉, and ~u =

〈
−3

5
,
−4

5

〉
, so the directional derivative

is D~uf(3, 4) = ∇f(3, 4) · ~u =
7

5

deg

m
.

(c) A moving object has position (x, y) at time t seconds given by x = e2t and
y = e−2t. Use the chain rule to find the speed (in degrees per second) at which
the temperature experienced by the object is changing when t = 0.

(The temperature experienced by the object means the temperature at the ob-
ject’s location.)

Solution: At t = 0 we have x = e2t = 1 and y = e−2t = 1,
dx

dt
= 2e2t = 2 and

dy

dt
= −2e−2t = −2. We also have

∂f

∂x
= x = 1 and

∂f

∂y
= −y = −1. This gives

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= (1)(2) + (−1)(−2) = 4

deg

sec
.

(d) Show that at all times the object is moving in the direction in which temperature
increases fastest.

Solution: The location of the object at time t is x = e2t and y = e−2t. The
direction in which temperature is increasing fastest is the direction of the gradient,
∇f(x, y) = 〈x,−y〉 = 〈e2t,−e−2t〉.
The direction in which the object is moving is the direction of the velocity〈
dx

dt
,
dy

dt

〉
= 〈2e2t,−2e−2t〉.

Since these vectors are positive scalar multiples of each other, they point in the
same direction.

9. Find the maximum value of the function f(x, y, z) = 2xy + 2xz + 2yz subject to the
constraint x+ y + z = 1.

Solution: Here we use Lagrange Multipliers. The constraint is g(x, y, z) = x+y+z =
1, so ∇f = 〈2y + 2z, 2x+ 2z, 2x+ 2y〉 and ∇g = 〈1, 1, 1〉. Then we have the following
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equations to solve:
〈2y + 2z, 2x+ 2z, 2x+ 2y〉 = λ〈1, 1, 1〉

x+ y + z = 1

Examining the first equation, we get 2y+ 2z = 2x+ 2z = 2x+ 2y, and this leads us to
x = y = z. Then plugging this into the constraint, we have 3x = 1, so x = y = z = 1

3
.

Finally, the maximum value is f

(
1

3
,
1

3
,
1

3

)
=

2

3
.

10. Find all the critical points of the function f(x, y) = (x2 + y2)e−x, and determine for
each whether it is a local minimum point, local maximum point, or saddle point.

Solution: For this, we need the partial derivatives fx(x, y) and fy(x, y). These are
fx(x, y) = (2x− x2 − y2)e−x and fy(x, y) = 2ye−x. The latter is equal to 0 only when
y = 0, and they are both equal to 0 whenever y = 0 and 2x − x2 = 0, that is when
(x, y) = (0, 0) or (x, y) = (2, 0). To find whether they are extrema, we use the second
derivative test. Here, fxx = e−x(2− 2x− 2x+ x2 + y2), fxy = −2ye−x and fyy = 2e−x.

• (2, 0) is not a local extremum (maximum or minimum) point, since fxx(2, 0) < 0
and fyy(2, 0) > 0. It is a saddle point. (You can also check directly that the
discriminant fxxfyy − (fxy)

2 is negative.)

• (0, 0) is a local minimum point, since at (0, 0) we have fxxfyy − (fxy)
2 = 4 > 0

and fyy(0, 0) = 2 > 0.

11. Let D be the region in the xy-plane for which 0 ≤ x ≤ 1 and 0 ≤ y < 1. Note that
this region is bounded but not closed.

(a) Sketch the region D. Use solid lines to indicate edges that belong to D, and
dotted lines to indicate edges that do not belong to D. Use filled circles to
indicate corners that belong to D, and empty circles to indicate corners that do
not belong to D.

Solution:

1

1

0
0 x

y
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(b) Does f(x, y) = xy have a minimum value on D? If so, what is that minimum
value?

Solution: Yes, the minimum value of f on D is 0. That value is attained at
points (x, 0) for 0 ≤ x ≤ 1 and points (0, y) for 0 ≤ y < 1; that is, at all points
on the x- or y-axis that belong to D. It is easy to see this is a minimum, because
at every point of D we have x ≥ 0 and y ≥ 0, so xy ≥ 0.

(c) Does f(x, y) = xy have a maximum value on D? If so, what is that maximum
value?

Solution: No. The values of f can get arbitrarily close to 1 on D, because for
every positive a < 1 the point (1, a) belongs to D, and f(1, a) = a. However, the
values of f on D never reach 1, because for all (x, y) ∈ D we have 0 ≤ x ≤ 1 and
0 ≤ y < 1, so 0 ≤ xy ≤ y < 1.

If we form a slightly larger closed region E, by adding to D the top edge (0 ≤
x ≤ 1, y = 1), then f does have a maximum value on E. That value is 1, and it
is attained at the point (1, 1).

12. Each function matches exactly one of the pictures, either a graph, or a set of level curves
(for equally spaced values of f). Identify the picture that goes with each function.

(a) f(x, y) = x2 + 4y2

(b) f(x, y) = x2 + 2xy + y2

(c) f(x, y) = 4x2 − 2y2

Solution:

(a) A. The intersection with the xz-plane is a parabola, and level curves are ellipses,
ruling out B, C, E, F. Sketching the level curve x2 + 4y2 = 1 rules out D, since
the ellipses are the wrong shape.

(b) E. This is (x + y)2, so the level curves are lines x + y = c, ruling out A, B, C,
D. Sketching level curves for f(x, y) = 0, 1, 2 shows that the spacing rules out F.

(c) B. The level curves are hyperbolae. (Alternatively, the intersections with the
coordinate planes are an upward-facing parabola, a downward-facing parabola,
and the crossed lines y = ±

√
2x.)
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A B

C D

E F
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