Math 8 - Lecture 12
Nadia Lafrenière
Dot product and projection
Problem: A wagon is pulled a distance of 100 m ailing a horizontal path by a constant force of 70 N . The handle of the wagon is held at an angle of 30° above the horizontal. Find the work clone by the force.

The problem is that the force is not applied in the same direction as the displace mint.

Intermediate step: What is the proportion of the force that is used for the displacernent?

Orientation of the displacement: \rightarrow
Orientation of the force: $\quad \sqrt{3} 0^{\circ}$
The force is $\left\langle 70 \cdot \cos \left(30^{\circ}\right), 70 \cdot \sin \left(70^{\circ}\right)\right\rangle N$, and only the first component cants for the work.

So, the work is

$$
100 \cdot 70 \cdot \cos \left(30^{\circ}\right) \approx 6062 \mathrm{~J}
$$

Here, we implicitly used the dot product, withat knowing it.
Definition
If \vec{u} and \vec{v} are two vectors, their dot product is the real number defined as

$$
\begin{aligned}
& \vec{u}_{:} \vec{v}=|\vec{u}||\vec{v},| \cdot \cos (\theta), \\
& \text { for } r \boldsymbol{j}
\end{aligned}
$$

notation for ρ
dat product
Where θ is the angle between $\vec{\mu}$ and \vec{v}.

In the problem earlier, we computed the dat product of the displacement vector and the force vector.

Example
Compute the following dot products:
(a) $\langle-3,5\rangle \cdot\langle 5,3\rangle$
(b) $\langle-3,5\rangle \cdot\langle-3,5\rangle$.

Solution.
(a) In the first case, the two vectors are orthogonal li.e. perpendicular to each other), and $\cos \left(\frac{\pi}{2}\right)=0$.
(b) Here, we have the same vector twice, and the angle between them is 0 . Hence,

$$
|\langle-3,5\rangle|^{2} \cos (0)=|\langle-3,5\rangle|^{2}=34
$$

Properties of the dot product
(a) $\vec{u} \cdot \vec{v}=0$ if and only if \vec{u} and \vec{v} are orthogonal (\vec{o} is orthogonal to all vectors)
(b) $\vec{u} \cdot \vec{u}=|\vec{u}|^{2}$.
(c) $c \cdot \vec{u} \cdot \vec{v}=(c \cdot \vec{u}) \cdot \vec{v}=\vec{u} \cdot(c \cdot \vec{v})$, for $c \in \mathbb{R}$.

分 $C \vec{u} \cdot \vec{v} \neq(c \cdot \vec{u}) \cdot(c \cdot \vec{v})$
It is equivalent to multiplying the length of one vector.
(d) $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$

We will talk about it once we know the algebraic notation.
Algebraic notation
Proposition
If $\vec{\mu}=\left\langle\mu_{1}, \mu_{2}, \mu_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are vectors, then

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

Proof
We have two 3 -dimensional vectors \vec{U} and \vec{v}, so there exists a plane (ie a 2 -dimensional object), that contains both, so we can draw them like this:

This is a triangle, so we can apply the Law of Cosines:

$$
|\vec{u}|^{2}=|\vec{u}|^{2}+|\vec{v}|^{2}-2 \underbrace{|\vec{v}||\vec{v}| \cos (\theta)}_{\vec{u} \cdot \vec{v}}
$$

Hence,

$$
\begin{aligned}
2 \vec{u} \cdot \vec{v} & =|\vec{\mu}|^{2}+|\vec{v}|^{2}-|\underbrace{\vec{u}}_{\vec{w}}|^{2} \\
& =\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}\right)+\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)-\left(\left(\mu_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}\right) \\
& =2 \mu_{1} v_{1}+2 \mu_{2} v_{2}+2 \mu_{3} v_{3} .
\end{aligned}
$$

thus,

$$
\vec{u} \cdot \vec{v}=u_{1} \cdot v_{1}+u_{2} v_{2}+u u_{3} v_{3}
$$

Using the latter definition of $\vec{\mu} \cdot \vec{v}$, it should be easy to understand why property (d) is true.
Problem: Find the angle between the vectors $\vec{a}=\langle 2,2,-1\rangle$ and

$$
\vec{b}=\langle 5,-3,2\rangle
$$

Solution: On the one hand, we have

$$
\vec{a} \cdot \vec{b}=2 \cdot 5+2 \cdot(-3)+(-1) \cdot 2=2
$$

on the other hand,

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cdot \cos (\theta)=3 \cdot \sqrt{38} \cdot \cos \theta
$$

SO

$$
\theta=\arccos \left(\frac{2}{3 \sqrt{38}}\right)=83,79^{\circ}
$$

Projection
The dot product is the key to find the projections of a vector onto another.
Definition
Given two vectors $\vec{\mu}$ and \vec{v}, the vector projection of \vec{V} onto \vec{u} is the part of \vec{v} in the orientation of \vec{e}, and is given by

$$
\operatorname{proj}\left(\vec{\mu}(\vec{v})=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^{2}} \vec{u}\right.
$$

The scalar projection of \vec{v} onto \vec{e} is the signed magnitude of the projection (ie. 土 the length). It is also called the component along \vec{v}, and is

$$
\operatorname{comp}_{\vec{u}}(\vec{v})= \pm \operatorname{lpoj}_{\vec{u}}(\vec{v})\left|=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|}=|\vec{v}| \cdot \cos (\theta)\right.
$$

where θ is the angle between \vec{l} and \vec{v}.

Example
Find the vector and scalar projections of $\langle 1,1,2\rangle$ onto $\langle-2,3,1\rangle$

$$
\langle 1,1,2\rangle,\langle-2,3,1\rangle=3, \quad|\langle-2,3,1\rangle|=\sqrt{14}
$$

Then,

$$
\operatorname{comp}\langle-2,3,1\rangle(\langle 1,1,2\rangle)=\frac{3}{\sqrt{14}} \text { and } \operatorname{proj}_{\langle-2,3,1\rangle}(\langle 1,1,2\rangle\rangle=\frac{3}{14}\langle-2,3,1\rangle=\left\langle-\frac{3}{4}, \frac{9}{14}, \frac{3}{14}\right\rangle .
$$

Reference: James Stewart. Calculus, eighth edition. 912.3.

