
Math 8
Fall 2019
Section 2

November 6, 2019

First, some important points from the last class:

Definition: The partial derivative of f(x, y) with respect to x at the point (x0, y0) is
the derivative of the function of x we get by setting y to have constant value y0:

∂f

∂x
(x0, y0) = fx(x0, y0) = Dxf(x0, y0) =

d

dx
(f(x, y0))

∣∣∣
x=x0

= lim
∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
.

Geometrically, this is the slope (vertical rise over horizontal run, treating the z-axis as
vertical) of the tangent line to the graph of f at (x0, y0, f(x0, y0))) in the plane y = y0.

The second partial derivatives of f include

fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2

fxy = (fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
.

Theorem (Clairaut’s theorem): If suitable hypotheses hold, the corresponding mixed second
partial derivatives of a function are always equal. That is,

fxy = fyx fxz = fzx fyz = fzy
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Example: Find an equation for the tangent plane to the graph of the function

f(x, y) = x2y2

at the point (1, 3, 9).

The partial derivatives of f at that point are

∂f

∂x
(1, 3) = (2xy2)

∣∣∣
(x,y)=(1,3)

= 18

∂f

∂y
(1, 3) = (2x2y)

∣∣∣
(x,y)=(1,3)

= 6

Vectors in the direction of the lines tangent to the graph of f at that point in vertical planes:

x = 1 :

〈
0, 1,

∂f

∂y
(1, 3)

〉
= 〈0, 1, 6〉

y = 3 :

〈
1, 0,

∂f

∂x
(1, 3)

〉
= 〈1, 0, 18〉

Vector normal to both tangent lines:

〈0, 1, 6〉 × 〈1, 0, 18〉 = 〈18, 6,−1〉

Equation of plane containing both tangent lines (containing point (1, 3, 9) and normal to the
vector 〈18, 6,−1〉):

〈x− 1, y − 3, z − 9〉 · 〈18, 6,−1〉 = 0

18(x− 1) + 6(y − 3)− (z − 9) = 0

(z − 9)︸ ︷︷ ︸
∆z

= 18︸︷︷︸
∂z
∂x

(x− 1)︸ ︷︷ ︸
∆x

+ 6︸︷︷︸
∂z
∂y

(y − 3)︸ ︷︷ ︸
∆y

z = 18(x− 1) + 6(y − 3) + 9

z =

(
∂f

∂x
(1, 3)

)
(x− 1)︸ ︷︷ ︸

∆x

+

(
∂f

∂y
(1, 3)

)
(y − 3)︸ ︷︷ ︸

∆y

+f(1, 3)

Theorem: If the graph of f has a tangent plane at the point (x0, y0, f(x0, y0)), its
equation is

z =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0).
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Theorem: (the same theorem rephrased) If the graph of f has a tangent plane at the
point (x0, y0, f(x0, y0)), it is the graph of the function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0).

Definition: The function

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0)

is called the linearization of f at (x0, y0). We may also call it a linear approximation or a
tangent approximation.

For (x, y) near (x0, y0), we have f(x, y) ≈ L(x, y). Setting x = x0 + ∆x and y = y0 + ∆y
(so x− x0 = ∆x and y − y0 = ∆y), when ∆x and ∆y are small, we can write

f(x, y) ≈ L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0)

f(x0 + ∆x, y0 + ∆y) ≈
(
∂f

∂x
(x0, y0)

)
(∆x) +

(
∂f

∂y
(x0, y0)

)
(∆y) + f(x0, y0).

f(x0 + ∆x, y0 + ∆y)− f(x0, y0) ≈
(
∂f

∂x
(x0, y0)

)
(∆x) +

(
∂f

∂y
(x0, y0)

)
(∆y);

∆z ≈ ∂z

∂x
∆x+

∂z

∂y
∆y.

The differential is

df =
∂f

∂x
dx+

∂f

∂y
dy, or dz =

∂z

∂x
dx+

∂z

∂y
dy︸ ︷︷ ︸

One piece for each input variable!

.

Everything works the same for f : R3 → R, or, for that matter, for f : Rn → R.
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Warning: The fact that f has partial derivatives at a point is not enough to guarantee
that its graph has a tangent plane there. Here are two pictures of the graph of the function

f(x, y) =
2xy√
x2 + y2

(setting f(0, 0) = 0, to make f defined and continuous everywhere).

The red lines are the intersections of the graph of f with the planes x = 0 and y = 0. Both

are horizontal, so
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0. The yellow ∨ is the intersection of the graph of

f with the plane x = y. It is pointed at the origin, and does not have a tangent line there,
so the graph of f has no tangent plane at (0, 0).

We do, however, have this useful theorem:

Theorem: If the partial derivatives of f(x, y) are defined near (x0, y0) and continuous
at (x0, y0), then f is differentiable at (x0, y0).

Defined near (x0, y0) means there is some (possibly tiny) disc with center (x0, y0) such
that the partial derivatives are defined at all points inside the disc. If this disc has radius δ,
it may be called the δ-neighborhood of (x0, y0). Some books, instead of defined near (x0, y0),
may say defined in some neighborhood of (x0, y0).

You can compute the partial derivatives of the function f pictured above, and check that
although they are defined everywhere, they are not continuous at (0, 0).
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Example: Show that
f(x, y, z) = xyz

is differentiable at the point (1, 2, 1), and then use the linear approximation to f to approx-
imate the product of the three numbers 1.01, 1.98, and .99.

The partial derivatives of f are

∂f

∂x
(x, y, z) = yz

∂f

∂y
(x, y, z) = xz

∂f

∂z
(x, y, z) = xy.

They are defined and continuous everywhere (because they are polynomials), so by the
theorem, f is differentiable everywhere.

For small values of ∆x, ∆y, and ∆z, we can say

f(1 + ∆x, 2 + ∆y, 1 + ∆z) ≈(
∂f

∂x
(1, 2, 1)

)
∆x+

(
∂f

∂y
(1, 2, 1)

)
∆y +

(
∂f

∂z
(1, 2, 1)

)
∆z + f(1, 2, 1) =

2∆x+ ∆y + 2∆z + 2.

At the point (1.01, 1.98, .99), we have ∆x = .01, ∆y = −.02 and ∆z = −.01, so

(1.01)(1.98)(.99) = f(1.01, 1.98, .99) ≈ 2(.01) + (−.02) + 2(−.01) + 2 = 1.98

(The actual product, per calculator, is 1.979802. Our error is .000198, which is about .01%.
This seems pretty good, since ∆x, ∆y, and ∆z were about 1% of our original numbers.)
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Remember our definition: The function f(x, y) is differentiable at the point (x0, y0, f(x0, y0))
if there is a function

L(x, y) = ax+ by + c

(where a, b, and c are constants) such that

L(x0, y0) = f(x0, y0)

and

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)√
(x− x0)2 + (y − y0)2

= 0.

Since we know that we must have

L(x, y) =

(
∂f

∂x
(x0, y0)

)
(x− x0) +

(
∂f

∂y
(x0, y0)

)
(y − y0) + f(x0, y0)

another way to phrase this definition is as follows: If

E(x, y) = f(x, y)− L(x, y)

is the error in using the linearization L(x, y) of f(x, y) at (x0, y0) to approximate f , then f
is differentiable at (x0, y0) if

lim
(x,y)→(x0,y0)

E(x, y)√
(x− x0)2 + (y − y0)2

= 0.

Note: There is an alternative definition of differentiability in the textbook: The function
f(x, y) is differentiable at (x0, y0) if there are functions ε1 and ε2 such that

lim
(∆x,∆y)→(0,0)

ε1(∆x,∆y) = 0 & lim
(∆x,∆y)→(0,0)

ε2(∆x,∆y) = 0

and we can write

f(x0 + ∆x, y0 + ∆y) = L(x0 + ∆x, y0 + ∆y) + (∆x)ε1(∆x,∆y) + (∆y)ε2(∆x,∆y),

where L(x, y) is the linearization of f(x, y) at (x0, y0). In other words, we have that the error
E(x0 + ∆x, y0 + ∆y) can be written in the form

(∆x)ε1(∆x,∆y) + (∆y)ε2(∆x,∆y)

where
lim

(∆x,∆y)→(0,0)
ε1(∆x,∆y) = 0 & lim

(∆x,∆y)→(0,0)
ε2(∆x,∆y) = 0.

Both definitions are ways of saying that the error not only approaches zero as one ap-
proaches (x0, y0), it approaches zero very quickly. The two definitions are actually equivalent;
that is, if one holds then the other one must hold as well. You can use either one.
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Example: Find an equation for the tangent plane to the sphere

x2 + y2 + z2 = 169

at the point (3, 4, 12).

We can consider z to be a function of x and y on the top half of the sphere, so z = f(x, y).
The graph of the linearization of f at (3, 4) will be tangent to the graph of f . We can find
∂z

∂x
by implicit differentiation, treating y as a constant, z as a function of x, and x as the

independent variable:
x2 + y2 + z2 = 169

2x+ 0 + 2z
∂z

∂x
= 0

∂z

∂x
= −x

z

In the same way, we get
∂z

∂y
= −y

z

and at (x, y, z) = (3, 4, 12)

∂f

∂x
=
∂z

∂x
= − 3

12

∂f

∂y
=
∂z

∂y
= − 4

12

Our linearization (or tangent approximation) is

L(x, y) =
∂f

∂x
(3, 4)(x− 3) +

∂f

∂y
(3, 4)(y − 4) + f(3, 4) =

(
−3

12

)
(x− 3) +

(
−4

12

)
(y − 4) + 12 = −x

4
− y

3
+

169

12

so we can write our tangent plane as

z = −x
4
− y

3
+

169

12

3x+ 4y + 12z = 169.
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Example: Use differentials to approximate the volume of metal in a cylindrical can of
height 6 inches and radius 2 inches, if the top and bottom of the can are .006 inches thick,
and the curved sides are .004 inches thick.

We can express volume as a function of height and radius as

V = πr2h.

We want the difference in volume between the inside and outside of the can, so we are looking
for ∆V when ∆r = .004 and ∆h = .012, given r ≈ 2 and h ≈ 6. We have

dV =
∂V

∂r
dr +

∂V

∂h
dh

dV = (2πrh) dr +
(
πr2
)
dh

∆V ≈ (2πrh) ∆r +
(
πr2
)

∆h.

Plugging everything in:

∆V ≈ (2π(2)(6)) (.004) +
(
2π(2)2

)
(.012) = (.192)π

The can contains approximately .192π cubic inches of metal.
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Exercise: The temperature at point (x, y, z) (where distances are in meters) is given by
the function f(x, y, z) = x2 + 2y2 + z4 (in degrees Celsius).

What are the units of
∂f

∂x
?

Find the linearization of the function f at the point (1, 1, 1).

The differential df of this function is given by

df =

Points P and Q are both near the point (1, 1, 1), and the displacement from P to Q

is
−→
PQ = 〈.01, .02,−.02〉. Use differentials to approximate the change in temperature when

moving from point P to point Q.
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Exercise: Use implicit differentiation to find the partial derivatives of z with respect to
x and with respect to y on the ellipsoid

x2

9
+
y2

16
+
z2

25
= 3

at the point (3, 4, 5). Then find an equation for the tangent plane to the ellipsoid at that
point.

Use the linear approximation to approximate the z-coordinate of the point on the ellipsoid
whose x- and y-coordinates are 3.02 and 4.01.

10



Exercise: Show that any function of the form

f(x, y) = aebx sin(by),

where a and b are constants, satisfies Laplace’s equation

∂2f

∂x2
+
∂2f

∂y2
= 0

Exercise: Check directly that Clairaut’s Theorem holds of any function of the form

f(x, y) = g(x)h(y),

where g and h are differentiable functions. (Hint: If x is constant, then g(x) is also constant.)

11



Mathematical Challenge: Prove that the two definitions of differentiability are equiv-
alent, by showing that if E(x, y) is the error in using the linearization of f(x, y) at (x0, y0)
to approximate f(x, y), and we set ∆x = x− x0 and ∆y = y − y0, then:

1. IF
E(x, y) = (∆x)ε1(∆x,∆y) + (∆y)ε2(∆x,∆y)

where
lim

(∆x,∆y)→(0,0)
ε1(∆x,∆y) = 0 & lim

(∆x,∆y)→(0,0)
ε2(∆x,∆y) = 0,

THEN

lim
(x,y)→(x0,y0)

E(x, y)√
(x− x0)2 + (y − y0)2

= 0.

2. IF

lim
(x,y)→(x0,y0)

E(x, y)√
(x− x0)2 + (y − y0)2

= 0,

THEN we can write

E(x, y) = (∆x)ε1(∆x,∆y) + (∆y)ε2(∆x,∆y)

where
lim

(∆x,∆y)→(0,0)
ε1(∆x,∆y) = 0 & lim

(∆x,∆y)→(0,0)
ε2(∆x,∆y) = 0.

Hint: Notice that ∆x = x − x0 and ∆y = y − y0. This means that (x, y) → (x0, y0) is
the same as (∆x,∆y)→ (0, 0).

Hint on part (2): You can write

E(x, y) =
(∆x)2

(∆x)2 + (∆y)2
E(x, y) +

(∆y)2

(∆x)2 + (∆y)2
E(x, y).
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