Math 8

Fall 2019

Section 2
November 8, 2019

First, some important points from the last class:

Theorem: If f : R2 — R is a function whose graph has a tangent plane at the point
(20, Yo, f(x0,y0)) (in other words, f is differentiable at (xg, o)), then the tangent plane is
the graph of the function

o) = (Ghtonmw) ) (@ = an) + (o) ) = ) + o)

Definition: Tangent means that

L(zo,y0) = f(Z0; Yo)
and
lim f(x,y)—L(x,y)

= 0.
(z,y)—(z0,y0) \/(QJ — $0)2 + (y - y0)2

Theorem: If the partial derivatives of f(z,y) are defined near (xg,yo) and continuous
at (xo, o), then f is differentiable at (zo, yo).

When f is differentiable at (z¢,yo), we can approximate f(z,y) near (xg,yo) by

f(z,y) = L(z,y).

This is called the linear approzimation or tangent approximation to f near (zq,yo). The
function L(z,y) is called the linearization of f at (xo,yo).

Definition: The differential of f is defined by

O o ¥
odr+

df = 83/

When f is differentiable, we can use the differential for making approximations:

8fA +8f

Af~ ox Jy



Preliminary Homework:
A surface S has the equation z = f(x,y). At (x,y) = (1,2) we have

0z 0z
=45 —=2 —=1
: ox oy
A bug is crawling on the surface S, and a light shining directly down through S (which is

transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is 7(¢). At
time t¢, the bug’s shadow has position 7(t) = (1,2) and velocity 7'(to) = (3, —1).

1. Find an equation for the tangent plane to S at the point (1,2,45).
z2=454+ 2)(z — 1)+ (1)(y — 2).
2. Use the tangent approximation
7(t) = (to) + (t — o) (t)
to approximate the shadow’s position at time tq+ At, where At is a very small change
" T(to + At) = (1,2) + At (3, —1) = (1 4+ 3A¢t, 2 — At)
3. Use the equation of the tangent plane to S to approximate the bug’s new z-coordinate.
245+ 2 —1)+1(y—2) =45+ 2((1 +3A1) — 1)+ 1((2 — At) — 2) =
45 + (2)(3)At + (1)(—1)At

4. Show that your answer is

45 + (<%(F(to)), 8—y(F(t0))> -F’(t0)> At.

5+ @E)At+()(-DAt = 45, +( @ (3,1 )At.
f(7(t)) of of 7' (to)
(Fa. Ja)




Definition: If f : R® — R, the gradient of f is the vector whose components are its
partial derivatives:

0 0 0
Vi) = g 2) G, Fan).

If f is differentiable, we may also call V f the (total) derivative of f and write it f’.

Theorem (the chain rule): If 7(¢) is differentiable at ¢y, and f(x,y, z) is differentiable at
’I?(to), then

o @) = f(7(0) - 7(1) = VF((R)) - ().

If you want to picture the chain rule geometrically, the preliminary homework gives a
way to think about it. Let 7: R — R? be the position function of a point moving in the
xy-plane. (In the preliminary homework, this is the shadow of a bug.) Imagine the zy-plane
sitting inside R3.

Let f: R? — R be a function whose graph is a surface S, so f(z,y) is the height of the
surface at (x,y). Now imagine a point moving on S directly above (or below) the moving
point in the zy-plane. (In the preliminary homework, this is the bug itself.) The height of
that point at time t is given by the composition

2= f(F(t) = (fo7)(t).
To find how fast this height is changing, we compute

 (FoR ) = FED) - T(0) = VD) 7).

Example: Suppose our bug is crawling around the surface z = 22+y?, so that its shadow
is moving in the xy-plane with (z,y)-coordinates at time ¢ given by 7(t) = (t?,¢3). When
the bug is at the point (1, 1,2), how fast is its height increasing?

The bug’s height is z = f(z,y) = 2® + y*> when its shadow has position (z,y), and the
shadow’s position at time ¢ is (z,y) = 7(t) = (t,¢3). When the bug is at (1, 1,2) we have
7(t) = (1,1) and ¢t = 1. By the Chain Rule,

dz d . . o)
Z = L) = VD) 7).
() = (215,3252) 7'(1) =(2,3) Vf(zx,y)=(2x,2y) V[f(l,1)=1(2,2)
dz

dt li=1 - Vf(F(l)) 'F/<1> = Vf(la 1) : <2,3> = <2, 2> . <2’3> = 10.



Theorem: (the chain rule): If 7(¢) is differentiable at ¢y, and f(x,y, 2) is differentiable

at 7(to), then
(RN = VD) -7 (0).

Rephrasing this, if w is a function of z, y, z, and x, y, z are all functions of ¢, then

dw  [Ow Ow Jw ' dr dy dz 8wdm+8wdy+6wdz
B Ox dt Oy 0z dt

@ N\aw oy o) \aa @
ow ow ow ow dx ow dy ow dz
A —Ar+ —Ay+ —Az~ ——At+ ——At + ——At =
YRt T Y Y a Y Ty a S Tt

owdr Owdy OJwdz dw
(8mdt+8ydt+8zdt)At (dt)At

Here’s another way to envision the chain rule physically: Suppose (z,y, z) is the position
of a moving object, and w = f(z,y, ) is the temperature at point (z,y, z). To find the rate
of change of the temperature of the moving object with respect to time, we have

dw  Owdx L ow ow dy L ow ow dz
dt Oz dt dy dt ' 9z dt

We can approximate the change in temperature over a small interval of time At by

ow dx ow dyAt ow dz

A — At + — —At
v O dt 8y dt 0z dt
S—~— S~—— SN~
~Ax ~Ay ~Az
2.2 . dw s
Example: If w = 2°y*, x = sin(t), and y = cos(t), find r at t = 3
7 LT \/§ 7y 1
t=— 3;23111(—):— y:cos(-):_
3 3 2 3 2
ow V3 Ow 3 dz 1 d V3
ox wy 4 oy YT W cos(?) 2 dt sin?) 2

dw _Owds  Owdy (v3) (1) (3)(_v3)__v3
dt  Oxdt Oydt |\ 4 2 4 2 )] 4



The chain rule in different settings:

w = f(z) = f(g(t))

t—x—w
dw _ dw de
dt  dx dt

w = f(r,y,2) = f(g(t))
t— (z,y,2) > w
dw 8wd_x Gw@ 8w%

A ordt oy a9 dl

VvV
one term for each intermediate variable

w = f(z,y,2) = f(G(s,1))
(s,t) = (x,y,2) = w
ow_0uds owdy  owo:
gt Ox ot 0Oy ot 0z Ot
ou_owos  owdy  owo
ds Oxr Os Oy 0s 0z 0s



Example: We can identify points on the cone 2 +y* = 22, z > 0, using two coordinates,
r and 6, by setting

r=rcos(f) y=rsinf) z=r 0<0<2r 0<r.

Define w on the cone by
w=xy — x2°.

0
Find (9_w at the point (z,y,2) = (—2,0,2).
r

At the point (x,y) = (—2,0) we have

ow 9 ow ow

7 A A i i P
ox 0z
E = COS(@) = -1 -— = Sln(e) = E =1

We treat 6 as a constant and differentiate with respect to r, using the chain rule:

ow 8w@ 8w@ 8w%_

et et g~ (D + (2O + E)(1) = 12

At a general point, we have

ow B 8w(9_ac 8w@ 8w%

o oot e g = W 2)(cos(0) + (2)(sin(0)) + (~202)(1) =

(rsin() — r?)(cos(6)) + (rcos(6))(sin(0)) + (—2r* cos(h))(1) =
2r sin(f) cos(6) — 3r? cos(h).

What does this mean? We define w as a function of (r, ) by looking at the point on the
cone (z,y, z) = (rcos(f), rsin(f),r), then computing w = zy — xz?. We want to know, when
(x,y) = (—2,0), the rate of change of w with respect to .

For example, suppose w denotes the temperature at a given point on the cone. Consider
the ubiquitous bug crawling on the cone, with its shadow moving in the zy-plane. The bug’s
temperature is w. When the bug’s shadow is where (r,6) = (2, —7), and the bug moves so
its shadow’s new location is where (r,6) = (2 4+ Ar, —m) (that is,  remains constant and r
changes by Ar), the bug’s temperature will have changed by

Aw ~ a—wA'r = 12Ar.
or



Recall implictly defined functions: An equation f(x,y, 2) = 0 defining a surface S can be
thought of as implicitly defining z as a function of z and y near a point on S. If we want to

0z . : . .
find — at that point, we can treat y as a constant and z as a function of x, and differentiate

the eq%lation wtih respect to x:
2 (flay.2) = —-(0)
gz YA = e
8f8_x+8f@+8f 0z _0

AT

=1 =0 unknown
of N of 0z
oxr  0z0x
of
9z _ &
of
Ox oL
Theorem: (the implicit function theorem) If f(z,y,z) = 0 implicitly defines z as a
function of x and y, then
of
O _ g 05y
= T of = T of -
ox 3L dy 3L
If f(z,y) = 0 implicitly defines y as a function of x, then
)
dy _ o
=—2
dx >

Example: Earlier, we looked at the surface

ar® + by +c2* =d
and used implicit differentiation:

0
2ax + 2028—2 =0

z
dz  ar
or ¢z’
Now we can use the implicit function theorem:
flx,y,2) = ax® + by’ + c2* —d flz,y,2)=0
0z B g—i _ 2ar  ax
or %8 2z ¢z’
0z

You do not have to memorize the implicit function theorem, but you may use it if you

wish.



Exercise: A surface S has the equation z = f(x,y). At (z,y) = (1,2) we have

z =45 % =2 % =1
ox dy
A bug is crawling on the surface S, and a light shining directly down through S (which is
transparent) casts the bug’s shadow on the xy-plane; the position of the shadow is 7(¢). At
time t¢, the bug’s shadow has position 7(t) = (1,2) and velocity 7'(t) = (3, —1).

Use the chain rule to find the rate of change of the bug’s altitude with respect to time
at the time tg.



Exercise: A radiation source at the origin subjects an object located at point (z,y, 2)

to radiation of intensity I = where k is a constant. At time ¢ = 0, an object

located at point (1,2, 1) is moving toward the point (4,6, 13) at a speed of 2.
Find the object’s velocity at time ¢ = 0.
At time t = 0, at what speed is the radiation intensity experienced by the object chang-

ing?



Exercise: We can identify points on the cone 22 +y? = 2%, 2 > 0, using two coordinates,
r and 6, by setting

x=rcos() y=rsinfd z=r 0<0<2r 0<r.

Define w by
w=xy — x2°.

0
Find 8_2’) at the point (—2,0,2).

(This is the same cone, the same function w, and the same point as in the example on
page 6.)
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Exercise: Suppose that S is a level surface f(x,y,2) = k of a differentiable function f
and 7(t) is a regular parametrization of a path « lying in S. Since the value of f equals k
for all points on .S, and all points 7(t) are on S, we have

f(r@) = k.

Start with this equation and differentiate both sides (using the chain rule for the left hand
side) to show that

Remember that k is a constant!

Since this is true for any path v in S, we can conclude that
VfLS

You just proved the following Theorem: The gradient of a differentiable function f at
a point is normal to the level surface (or level curve) of f containing that point.
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Exercise: If f(x,y,z) = 42% — y? + 22, then the hyperboloid 422 — y* + 22 = 4 is a level
surface of f, so it should be perpendicular to the gradient of f at every point. The point
(1,1,1) is on this surface. Verify that the surface is perpendicular to the gradient of f at
the point (1,1, 1) in the following way:

. .. . 0z 0z )
Use the implicit function theorem to compute — and — for the portion of the surface

ox oy
containing (1,1, 1), then evaluate those partial derivatives at the point (1,1,1). Use these

values to find the equation of a tangent plane to the surface at (1,1,1).
Verify that the tangent plane is perpendicular to V f(1,1,1).

12



Theorem: (the chain rule): If 7(¢) is differentiable at ¢y, and f(z,y) is differentiable at
7(to), then

d

5 S(@)) = V() ().

Proof of the Chain Rule:
Let 7(t) = (zo,yo). If f is differentiable at (z¢,yo), we can express f(z,y) as

[z y) = alz —x0) + by —yo) + fzo,0) +  E(z,y)
——

-

tangent approximation P(z,y) error f(z,y)—P(z,y)
where s
lim @y
(@) —=(zow0) |(T — To, Yy — Yo)|
of of
a = — (o, b= —(xo, V f(xo, = (a,b
61:( 03/0) 83/( 0?/0) f( oyo) < >

We have 7(tg) = (z0,v0) and 7 is differentiable at t,. We can write 7(t) = (z(t),y(t)) and
compute the derivative of f(7(t)) at ¢t = ty. We use the limit definition of derivative:

d f(r(1)) = f(7(to))

5 (7)) = lim —

Now we say 7(t) = (x(t),y(t)).

L S = FGT) | F(0),5() = Fow)

t—to t—tp t—to t—to

Now we express f(z,y) as above.

f(x(t), y(t)) = f (w0, 90)

i t—to B
o @) = 20) + b(y(t) = yo) + f (w0, y0) + E(x(t), y(t)) — (w0, o)
t—to t—to

We cancel some things out and do some regrouping;:

a(x(t) — o) +b(y(t) = yo) + f (w0, 90) + E(x(t), y(t)) — f (w0, %0)

i t—to -
o alalt) — alto)) + by(t) ~ ylto)) + Elx(t).(t)
t—to t—1to
_(z(t) — z(to)) (@) —ylo) . Elx(t),y(t))
alim = P e i e
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In the first two limits we recognize the definition of the derivative.

. (x(t) —x(to)) _(y(t) —y(to)) | . E(x(t),y(t))
afim ———— tbhlm e i e e =

E(x(t
! ! . .
ax'(to) +by'(to) + lim =

(0,5) - (& (10), o/ (1)) + Jim ©
Now we remember that (a,b) = V f(xo,y0) = Vf(7(t0))-

() - (@' (to), o/ (o)) + lim YO G ) o) 4t 60

t—to t—to t—to t— 1ty

The boxed part is what we want, so we have to show the remaining limit is zero.

We will assume for simplicity that 7/(ty) # 0, so that for ¢ near to we have 7(t) # 7(to),
and we can safely divide by |7(t) — 7(¢y)|. (This assumption can be eliminated by a small

trick.)
o E<x<t>,y<t>>‘ fig | E@(0). ()| | 71) — 7(bo) ‘:
t—to t— 1o t—to | |7(t) — (o) t—to
B0 |70 = )
t—=to | |7(t) — 7(to)| | t=t0 |  t—1o

Now we recognize the definition of derivative in the right-hand term.

Ex(t), y(1)) r(t) — (to) E(x(t), y(t))
|

|7(t) — 7(to) t—to |7(t) — 7(to)]
We use the fact that as t — ¢y we have 7(t) — 7(t), or (z,y) — (2o, yo)-

E(x(t),y(t)) E(x,y)
|7(t) — 7(to)] (2, y) — (0, 0)]

Now we use the definition of tangent.

. 7 (to)]) = 0.
<(x’y)i%o7yo) |(z, (o, Y0) |D ) (|T ( 0)|)

This is what we wanted. We have shown

= lim G

t—to

lim
t—to

lim
t—to

7 (ty)| = lim
7 (2o) (29)—(z0.90)

|7 (o)

lim
t—to
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