
Math 8
Fall 2019
Section 2

November 15, 2019

First, some important points from the last class:

Definition: The point (a, b) is a critical point of f(x, y) if either ∇f(a, b) = 〈0, 0〉 or
∇f(a, b) is undefined.

The point (a, b) is a local maximum point of f(x, y) if there is any neighborhood of (a, b)
throughout which f(x, y) ≤ f(a, b).

The point (a, b) is a local minimum point of f(x, y) if there is any neighborhood of (a, b)
throughout which f(x, y) ≥ f(a, b).

The point (a, b) is a saddle point of f(x, y) if ∇f(a, b) = 〈0, 0〉 and (a, b) is neither a local
maximum point nor a local minimum point.

Theorem: Local maximum and minimum points are always critical points.

Definition: If (a, b) is a critical point of f(x, y), and all the second partial derivatives
of f are defined and continuous near (a, b), we define the discriminant of f at (a, b) to be
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Theorem (the second derivative test): If (a, b) is a critical point of f(x, y), and all the

second partial derivatives of f are defined and continuous near (a, b), then

D(a, b) > 0 &
∂2f

∂x2
(a, b) < 0 =⇒ (a, b) is a local maximum point;

D(a, b) > 0 &
∂2f

∂x2
(a, b) > 0 =⇒ (a, b) is a local minimum point;

D(a, b) < 0 =⇒ (a, b) is a saddle point;

D(a, b) = 0 =⇒ the second derivative test fails to give any information about (a,b).

Definition: A region D is bounded if there is some number b such that every point in
D has a distance from the origin of at most b.

D is open if every point that belongs to D has a neighborhood that is included in D.
D is closed if every edge point of D belongs to D. (In three dimensions, every point on

the surface of D belongs to D.)
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Definition: The number c is an absolute maximum value for f(x, y) on D if there is
some point (a, b) in D such that f(a, b) = c, and for all points (x, y) in D we have f(x, y) ≤ c.
The absolute maximum value c is attained at (a, b).

The number c is an absolute minimum value for f(x, y) on D if there is some point (a, b)
in D such that f(a, b) = c, and for all points (x, y) in D we have f(x, y) ≥ c. The absolute
minimum value c is attained at (a, b).

Theorem: A continuous function f(x, y) defined on a closed bounded region D has an
absolute maximum value and an absolute minimum value on D. The points at which those
extreme values are attained are either critical points of f or edge points of D.

Preliminary Homework: Pictured are some level curves of the function f(x, y) = xy,
and an ellipse γ, which is a level curve of a function g(x, y).

1. Give the approximate coordinates of the points on γ at which f(x, y) is largest and
smallest.

2. What relationship do the level curves of f and of g have at those points?

3. What relationship do the gradients of f and of g have at those points? Why?

We can see the largest and smallest values of f(x, y) on γ are at approximately (±2, ±1).
At those points the ellipse is tangent to the level curve of f(x, y). Because the ellipse is a
level curve of g(x, y), and gradients are normal to level curves, this means the gradients of
f and g must be parallel at those points.
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From last class: Find the largest and smallest values of f(x, y) = x2− y2 on the region
x2 + y2 ≤ 1.

There is one critical point of f , the origin (0, 0), and

f(0, 0) = 0.

This is a possible candidate for the largest or smallest value.
Now we have to check the edge points.
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The edge, the circle x2 + y2 = 1, is a level curve of g(x, y) = x2 + y2. We look for points
at which the circle is tangent to a level curve of f(x, y) = x2−y2 by looking for points on the
circle at which ∇f and ∇g are parallel. Parallel vectors are scalar multiples of each other.
So we want to find points (x, y) (and some scalar λ) satisfying:

∇f(x, y) = λ∇g(x, y)

g(x, y) = 1.

For our example, these equations become

〈2x,−2y〉 = λ 〈2x, 2y〉

x2 + y2 = 1.

We can break up our first equation into its x and y components:

2x = λ2x

−2y = λ2y

x2 + y2 = 1.

Our first equation gives us x = 0 or λ = 1.
For x = 0, our third equation gives us y = ±1.
For λ = 1, our second equation gives us y = 0, so our third equation gives us x = ±1.
This gives the four points (0, 1), (0,−1), (1, 0), (−1, 0) to add to (0, 0) as possible locations

of the largest and smallest value of f(x, y) on the region x2 + y2 ≤ 1. Evaluating f(x, y) at
these points, we see the extreme values of f(x, y) on our region are

f(1, 0) = f(−1, 0) = 1 f(0, 1) = f(0,−1) = −1.

Finding the largest or smallest value of f(x1, . . . , x1) is called an optimization problem.
Finding the largest or smallest value of f(x1, . . . , xn) when (x1, . . . , xn) is required to satisfy
some condition (for example, x2 + y2 = 1) is called a constrained optimization problem, and
the condition is the constraint.

When we are trying to maximize or minimize f on a closed, bounded, region, looking
at the edge of that region generally involves constraints of the form g(x1, . . . , xn) = k (for
example, x2 + y2 = 1). In other words, (x1, . . . , xn) must lie on some level set (level curve,
level surface, . . . ) of g.

The method we just used, called the method of Lagrange multipliers, is designed to solve
exactly this kind of problem.
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Theorem (the method of Lagrange multipliers): Suppose f(x1, . . . , xn) and g(x1, . . . , xn)
are differentiable functions, and S is a level set of g, defined by g(x1, . . . , xn) = k.

If f(x1, . . . , xn) has a largest (or smallest) value on S, then it attains that extreme value
at a point (x1, . . . , xn) at which either

∇g(x1, . . . , xn) = ~0

or, for some scalar λ,
∇f(x1, . . . xn) = λ∇g(x1, . . . , xn).

This means that to solve this problem, we should look for solutions to

∇g(x1, . . . , xn) = ~0 & g(x1, . . . , xn) = k

and to
∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn) & g(x1, . . . , xn) = k.

5



Example: Find the distance between the plane x+2y−z = 16 and the point P = (3, 1, 1).

To do this, we find the point on the plane that is closest to P . The distance between any
point (x, y, z) and the point P is

d =
√

(x− 3)2 + (y − 1)2 + (z − 1)2,

and we want to find the smallest value of d on the plane. It is easier to find the smallest
value of d2, so we define

f(x, y, z) = (x− 3)2 + (y − 1)2 + (z − 1)2.

We want to find the smallest value of f(x, y, z) on the surface x + 2y − z = 16, which is a
level surface of the function g(x, y, z) = x+ 2y − z.

Since ∇g(x, y, z) = 〈1, 2,−1〉, we know ∇g(x, y, z) is never zero, so we must solve:

∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn) & g(x1, . . . , xn) = k.

〈2(x− 3), 2(y − 1), 2(z − 1)〉 = λ 〈1, 2,−1〉 & x+ 2y − z = 16

Breaking up the first equation into its x, y, and z components gives

2x− 6 = λ 2y − 2 = 2λ 2z − 2 = −λ x+ 2y − z = 16.

These are four linear equations in four unknowns, so we can solve this system:

λ = 2x− 6

2y − 2 = 2λ =⇒ 2y − 2 = 2(2x− 6) =⇒ y = 2x− 5

2z − 2 = −λ =⇒ 2z − 2 = −(2x− 6) =⇒ z = 4− x

x+ 2y − z = 16 =⇒ x+ 2(2x− 5)− (4− x) = 16 =⇒ x = 5

x = 5 y = 2x− 5 = 5 z = 4− x = −1

The closest point on the plane to P is (5, 5,−1), so the distance between the plane and
P = (3, 1, 1) is the distance between these two points,√

(5− 3)2 + (5− 1)2 + (1− (−1))2 =
√

22 + 42 + 22 =
√

24 = 2
√

6.
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Exercise: Use Lagrange multipliers to find the largest value of xy on the ellipse with
equation

4x2 + y2 = 4.
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Exercise: Find the largest and smallest values of the function f(x, y, z) = x2 − y2 + z2

on the region x2 + 4y2 + 9z2 ≤ 36.
Remember to check critical points of f inside the region.
Then use the method of Lagrange multipliers to look for maximum and minimum points

on the surface of the region.
The surface of the region is the ellipsoid with equation x2 + 4y2 + 9z2 = 36, so it is a

level surface of the function g(x, y, z) = x2 + 4y2 + 9z2.
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Exercise: If possible, use the method of Lagrange multipliers to find the largest value of
the function f(x, y) = x2 + 4y2 on the branch of the hyperbola xy = 1 in the first quadrant.
If this is not possible, explain why.

Now do the same thing for the smallest value of f .
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