Math 8

Fall 2019

Section 2
September 20, 2019

First, some important points from the last class:

(e,
(an> denotes the infinite sequence (al, as,as, . .. >
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lim a, = L is defined to mean: For every € > 0, there is an N, such that
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for all n > N we have |L — a,| < .

Important examples are sequences of finite geometric series,
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diverges  if |r| > 1;

and sequences of Taylor polynomials
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We hope to be able to show that, in many cases,

lim P,(z) = f(x).

1
We already know this is the case when f(x) = T the Taylor polynomials
—x

are centered at 0, and |z| < 1. This is because the Taylor polynomials are
finite geometric series,

Puz)=1+z+2*+-- +2",



so for |z| < 1 we have

lim P,(x) = lim (14+ 2 +2° + -+ 2")
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However, for |z| > 1 we know lim P,(z) diverges, so things don’t always
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work out.



Prelmiinary Homework:

The degree 1 Taylor polynomial approximation to f(z) = sinz centered
at 0 is
Pl (%) = X.

Therefore we may say that
sin .01 ~ .01.

(Note that .01 means .01 radians.) But how close is this approximation?

First we ask how large f(.01) could possibly be. We know that f(0) =0
and f’(0) = 1. We also know that —1 < f”(z) < 1 for every z.

The largest possible value of f(.01) for a function with these properties
will occur when f grows as fast as possible between 0 and .01. That will
happen when f’(x) is as large as possible. The largest possible values of
f'(z) will occur when f”(z) is as large as possible. The largest f”(x) can
possibly be is 1. So by assuming f”(z) = 1, we can find an upper bound on
how large f(.01) could be.

Homework:

1. Find a degree 2 polynomial P(x) with the same value and derivative
as f(z) =sinz at 0 and constant second derivative P"(z) = 1.

How large could sin .01 possibly be?

2. Find a degree 2 polynomial P(z) with the same value and derivative
as f(z) =sinz at 0 and constant second derivative P"(z) = —1.

How small could sin .01 possibly be?

3. How large could the difference |sin.01 — .01| possibly be?



In the preliminary homework for today, you answered a particular case
of the following question:

If P(x) is the degree 1 Taylor polynomial for f(z) centered at a,
then how far away from f(z) could Pj(x) be?

We can define R,,(x) = f(2)— P,(z). Then we are asking how large R;(x)
can possibly be. Applying the same strategy you used in general, we get:

Taylor’s inequality for n = 1:

Ra(o)] < (o - a)?

where B, is a number such that

[f"(w)] < By

for every w in the interval between a and .

Note: Sometimes we define E,(z) = |R,(z)| =
error in using P,(z) as an approximation for f(z).

| f(z) — P,(x)|. This is the

(
We hope hm E,(z)=0.



The function f(x) is in red and the degree 1 Taylor polynomial centered
at a is in blue. The green and gray parabolas are upper and lower bounds
on f(x) given by this formula.






In these formulas, and the general formulas given below, P, () is the n"
Taylor polynomial for f(x) at the point a,

is the n'* remainder, E,(zr) = |R,(z)| is the n'" error, and the (n + 1)™"
derivative of f exists everywhere between a and =x.

Taylor’s inequality:

Bn+1 n+1
— <— —
Bula) = |Ra(o)] < Cothsle =

where B, is a number such that
£ ()] < By
for every w in the interval between a and .
Today, we’ll see what Taylor’s inequality can tell us.

Questions you can approach using Taylor’s inequality, for a particular
function f(z) and center a for the Taylor polynomials, include:

1. For a particular = and n, how large can the error in using P,(x) to
approximate f(x) be?

2. For a particular x and error € > 0, how large does n have to be in order
for P,(z) to approximate f(x) with an error at most 7

3. For a particular n and error ¢, for which values of x does P, (x) approx-
imate f(x) with an error at most €7

4. For a particular z, is it the case that lim P,(z) = f(x)?

n—oo

5. For which values of z is it the case that lim P,(z) = f(x)?

n—oo



Example: Use the degree 5 Maclaurin polynomial for f(z) = e* to
approximate e, and give a bound on the error. You can use the fact that
e < 3.



Example: If P,(x) is the n® Maclaurin polynomial for f(x) = e, then
for every x,
lim P,(z) = e".

n—oo

Show this by showing that, for any particular x,

lim E,(x) =0.
n—oo
B, B, o
E,(x) < g — gttt = 2 |2" ) so it is enough to show
(n+1)! (n+1)!
B,
lim +l |z|"t =0
n—oo (n + 1)!



1. Use Taylor’s inequality to find a bound on the error in using the 7t
Taylor polynomial for f(z) = cos(z) at the point a = 0 to approximate
cos(1).

Hint: When you are trying to find the number B,,; in the formula,
remember that the values of the sine and cosine functions are always
between —1 and 1.
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2. Suppose you are using P, (1) to approximate cos(1), where P, () is the
n'" Taylor polynomial for f(x) = cos(x) at the point a = 0. Suppose
you only need the error to be at most 1072, How small an n can you
use?
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3. Suppose you are using P5(x) to approximate cos(z), where P,(x) is the
n'" Taylor polynomial for f(z) = cos(x) at the point a = 0. For what
values of x are you guaranteed that the error is at most 10737
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4. Let P,(z) be the n'"* Taylor polynomial for f(x) = cos(x) centered at
the point @ = 0. Use the definition of limit! to show that

lim P,(1) = cos(1).

IThat is, suppose € > 0. Find an N such that (n > N = |cos(1) — P,(1)] < ¢).
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Now argue that, for any x, we have
lim P,(z) = cos(x).

You do not have to use the formal definition of limit.

Hint: Use Taylor’s inequality to argue that

lim R,(z) = 0.

n—oo
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5. Let f(z) =1In(1 —x), and P,(x) be the n' Taylor polynomial for f(z)
at the point a = 0.

(a) Find a formula for the k' derivative of f(x) for k > 1.

Write out the first few terms of P,(x) for large n. Make sure you
include enough terms to see a pattern.
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(b) Use Taylor’s inequality to find a number n such that the n!* Taylor
polynomial for f(x) = In(1 — z) centered at the point a = 0 and
evaluated at x = .1 approximates In(.9) with an error of at most
.001.
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(c¢) For which numbers x does Taylor’s inequality guarantee that you
can always approximate f(x) by P,(z) and make the error as small
as you like by making n large enough?
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(d) For which numbers = does part (a) tell you that you cannot ap-
proximate f(z) by P,(z) and make the error as small as you like
by making n large enough?

n

T
Hint: Consider lim — for different values of x.
n—oo N
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Note: Taylor’s inequality may also be called Taylor’s error formula.

There is a formula called the Lagrange remainder formula, from which
one can deduce Taylor’s inequality:

Lagrange remainder formula:

10 (w)

(n+1)! (= a)™

Rn(x) =

for some point w in the interval between a and z.

There is also an integral form of the Lagrange remainder formula:

Ro(z) = /I f(n+1)(t)u dt

n!

You don’t have to know these. If a problem asks you to use the La-
grange remainder formula to find a bound on E,,(x), you can use Tay-
lor’s inequality.
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