
Math 8
Fall 2019

Taylor Polynomials and Taylor Series Day 2

Definition: An infinite sequence of numbers is a list of numbers (a0, a1, a2, . . . ), which
is written as (an)∞n=0, or (in our textbook) as {an}∞n=0.

Warning: {a0, a1, a2, . . . } almost always means a set, NOT a sequence. Our textbook is
violating a standard convention in its choice of notation.

An infinite sequence may actually begin at any integer, so we could have

(a3, a4, a5, . . . ) = (an)∞n=3 .

A sequence may be described by giving enough entries to establish a pattern:

(1,−1, 1,−1, 1,−1, . . . )

or by giving a formula for an:

((−1)n)∞n=0 , or an = (−1)n.

We are particularly interested in sequences of the form

(P0(x), P1(x), P2(x), P3(x) . . . ).

We hope to find that
lim
n→∞

Pn(x) = f(x).

Intuitively, this means that we can make the approximation Pn(x) as close as we want to
f(x) by making n large enough. This idea is captured by the following definition:

Definition: The sequence (an)∞n=i converges to the number L, or

lim
n→ ∞

an = L,

if for every ε > 0 there is N ∈ N such that1

n > N =⇒ |an − L| < ε.

Intuitively, ε is how close you want the approximation to be, and N is how large you
have to make n to guarantee the approximation is that close. Generally, N is a function of
ε; the closer to the limit you want to get, the farther out in the sequence you need to go.

1N denotes the set of natural numbers: N = {0, 1, 2, 3, . . . }. The symbol ∈ means “is an element of.” The
number 0 is sometimes included as a natural number and sometimes not, depending on the text.
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Example: Use the definition of limit to show that .99999 · · · = 1.
First we must say what we mean by .99999 · · · . Mathematicians say

.999999 · · · = lim
n→∞

. 99999︸ ︷︷ ︸
n places

.

To show this limit is 1, according to the definition, we must do the following:
Given ε > 0, find N so that whenever n > N we have

|1− . 99999︸ ︷︷ ︸
n places

| < ε.

Now

1− . 99999︸ ︷︷ ︸
n places

= . 00001︸ ︷︷ ︸
n places

=
1

10n
.

We want to make this less than ε. Using what we know about logarithms (in particular that
they are increasing functions), we have

1

10n
< ε ⇐⇒ 1

ε
< 10n ⇐⇒ log10

(
1

ε

)
< log10(10n) = n.

Therefore, we can say:

Given ε > 0, choose any N ≥ log10

(
1

ε

)
. Then for every n > N we have

n > log10

(
1

ε

)
;

10n >
1

ε
;

ε > 10−n = 1− . 99999︸ ︷︷ ︸
n places

= |1− . 99999︸ ︷︷ ︸
n places

|;

and this is what we needed to show.

Definition: A sequence that does not converge to any number is said to diverge.

Even if a sequence approaches +∞ or −∞, we still say it diverges.

Definition: The sequence (an)∞n=i diverges to +∞, or approaches +∞, or

lim
n→ ∞

an = +∞,

if for every M ∈ N there is N ∈ N such that

n > N =⇒ an > M.
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You should be able to give a similar definition for

lim
n→ ∞

an = −∞.

A divergent sequence may diverge to +∞ or to −∞, in which case we may say its limit
is +∞ or −∞, or diverge without having any limit at all.

Example: You should convince yourself that

lim
n→∞

xn =


+∞ if x > 1;

1 if x = 1;

0 if |x| < 1;

no limit if x ≤ −1.

Example: If c is constant, then

lim
n→∞

(
cn

n!

)
= lim

n→∞

( c
1

)( c
2

)( c
3

)
· · ·
( c
n

)
.

For n > 2c, the (n + 1)th term of the sequence is less than half the nth term, and dividing
something in half over and over again indefinitely gives a limit of 0. Therefore,

lim
n→∞

(
cn

n!

)
= 0.

On the other hand,

lim
n→∞

(
nn

n!

)
=∞.

To see this, suppose for simplicity that n is even, so n = 2m.(
(2m)(2m)

(2m)!

)
=

(
2m

1

)(
2m

2

)(
2m

3

)
· · ·
(

2m

m

)(
2m

m + 1

)
· · ·
(

2m

2m

)
If we increase the denominator of a fraction we decrease its value, so this is greater than(

2m

m

)(
2m

m

)(
2m

m

)
· · ·
(

2m

m

)(
2m

2m

)
· · ·
(

2m

2m

)
= (2)m(1)m = 2m = 2

n
2 ,

which approaches infinity as n approaches infinity.

Example: The nth Maclaurin polynomial (Taylor polynomial centered at a = 0) for

f(x) =
1

1− x
is

Pn(x) =
n∑

k=0

xk = 1 + x + x2 + · · ·+ xn.
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We can find an explicit formula for Pn(x) (assuming x 6= 1) as:

Pn(x) =
1

1− x
(1− x)Pn(x)

=
1

1− x
((1− x)(1 + x + x2 + · · ·+ xn−1 + xn))

=
1

1− x
((1)(1 + x + x2 + · · ·+ xn−1 + xn)− (x)(1 + x + x2 + · · ·+ xn−1 + xn))

=
1

1− x
((1 + x + x2 + · · ·+ xn−1 + xn)− (x + x2 + x3 · · ·+ xn + xn+1)).

We have a lot of cancellation of terms here (x and −x, x2 and −x2, . . . , xn and −xn), leaving

Pn(x) =
1

1− x
((1)− (xn+1)) =

1− xn+1

1− x
.

By the previous example, if |x| < 1, then lim
n→∞

xn+1 = 0, so

|x| < 1 =⇒ lim
n→∞

Pn(x) =
1

1− x
= f(x).

This is just what we hoped for. On the other hand,

|x| ≥ 1 =⇒ (Pn(x))∞n=0 diverges,

so Pn(x) can be used to get good approximations to f(x) only for |x| < 1.
For example,

Pn(2) = 1 + 2 + 4 + · · ·+ 2n =
1− 2n+1

1− 2
=

1− 2n+1

−1
= 2n+1 − 1,

so lim
n→∞

Pn(2) = +∞.

Note: For a limit of Taylor polynomials

lim
n→∞

n∑
k=0

f (k)(a)

k!
(x− a)k

we may write
∞∑
k=0

f (k)(a)

k!
(x− a)k.

A sum of infinitely many term is called an infinite series, and this one in particular is a
Taylor series. We will look more at series later.

A point of terminology: In ordinary English, sequence and series can mean more or less
the same thing, but in mathematical English they are different. A sequence is a list of things.
A series is a list of things added together.
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There is an extensive theory of sequences and series, most of which we will not see in
Math 8. In this section, we state a few rules that make so much sense that we have already
used some of them without saying so. They should remind you of limit rules from Math 3.
That’s because they’re really the same rules in a different guise.

Generally the limits A and B in these rules are assumed to be numbers. The rules
also apply to limits of ∞ and −∞, as long as the expression you are evaluating is defined
(∞ +∞ = ∞) rather than undefined (∞−∞ is undefined). Be warned that the quotient
∞
0

is undefined, not ∞. That is because if an approaches ∞ and bn approaches 0 while

oscillating between positive and negative values, then
an
bn

will also oscillate between positive

and negative values, and therefore will not approach either ∞ or −∞.
You are free to use these rules in any homework or exam problem (unless the instructions

say otherwise, such as, “use the definition of limit.”) You do not have to cite the rule by
name, as long as you make clear what fact you are using.

Do not be intimidated by the length of this list. This is not a collection of facts to mem-
orize. This is reassurance that your common sense conclusions about series and sequences
are generally valid.

Sequence Rules

1. (constant sequence rule)

If (an)∞n=0 is the constant sequence with value c (that is, an = c for every n), then

lim
n→∞

an = c.

2. (constant multiple rule)

If c is a constant, then (
lim
n→∞

an = A
)

=⇒ lim
n→∞

(can) = cA.

3. (addition and subtraction rules)(
lim
n→∞

an = A & lim
n→∞

bn = B
)

=⇒ lim
n→∞

(an ± bn) = A±B.

4. (multiplication rule)(
lim
n→∞

an = A & lim
n→∞

bn = B
)

=⇒ lim
n→∞

(anbn) = AB.

5. (division rule)

If bn 6= 0 for all n and B 6= 0, then(
lim
n→∞

an = A & lim
n→∞

bn = B
)

=⇒ lim
n→∞

(
an
bn

)
=

A

B
.
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6. (continuous function rule)

If f is continuous at A, then(
lim
n→∞

an = A
)

=⇒ lim
n→∞

(f(an)) = f(A).

For example, since lim
n→∞

1

n
= 0, we know lim

n→∞
cos

(
1

n

)
= cos(0) = 1.

7. (horizontal asymptote rule)(
lim
x→∞

f(x) = A
)

=⇒ lim
n→∞

(f(n)) = A.

8. (limit comparison)

If an ≤ bn for all n, then(
lim
n→∞

an = A & lim
n→∞

bn = B
)

=⇒ A ≤ B.

9. (squeeze theorem)

If an ≤ cn ≤ bn for all n, then(
lim
n→∞

an = A & lim
n→∞

bn = A
)

=⇒ lim
n→∞

(cn) = A.

10. (tail end rule)

The sequences (an)∞n=0 and (an)∞n=k have the same limit.

11. (decreasing differences rule)

If (an)∞n=0 converges, then lim
n→∞

(an+1 − an) = 0.

The converse of this is false, as you can see from the sequence

1, 1
1

2
, 2, 2

1

3
, 2

2

3
, 3, 3

1

4
, . . . ,

which does not converge even though the differences of successive terms do approach
zero.

We usually use this rule to show divergence: If lim
n→∞

(an+1 − an) 6= 0 then (an)∞n=0 does

not converge.
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12. (subsequence rule)

If (bn)∞n=0 is a subsequence of (an)∞n=0 (that means it is the same sequence but with
some — possibly infinitely many — terms left out), then(

lim
n→∞

an = A
)

=⇒ lim
n→∞

(bn) = A.

On the other hand, the original sequence may diverge even if the subsequence converges.
For example,

1, 1, 1, 1, 1, . . .

is a subsequence of
1, 2, 1, 3, 1, 4, 1, 5, . . .

13. (monotone sequence theorem)

An increasing sequence must either converge to a limit or approach +∞, and a de-
creasing sequence must either converge to a limit or approach −∞.
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