
Math 8
Fall 2019

Taylor Polynomials and Taylor Series Day 4

Infinite Series

Our major interest in discussing limits of sequences is to find limits of Taylor polynomials,

lim
n→∞

Pn(x) = lim
n→∞

n∑
k=0

f (k)(a)

k!
(x− a)k.

We may write this limit instead as

∞∑
k=0

f (k)(a)

k!
(x− a)k.

Definition: An infinite series is a sum of infinitely many terms,

∞∑
k=0

ak.

(A sequence is a list; a series is a sum.) The sum is defined as follows: The nth partial sum
is the sum of the terms out to an,

Sn =
n∑

k=0

ak,

and the sum of the series is the limit of the partial sums,

∞∑
k=0

ak = lim
n→∞

Sn = lim
n→∞

n∑
k=0

ak.

If this limit exists and is a number, the series converges; if not, it diverges.

Definition: The Taylor series for f(x) centered at a is the series

∞∑
k=0

f (k)(a)

k!
(x− a)k.

This is sort of the degree infinity Taylor polynomial. Its nth partial sum is the degree n
Taylor polynomial for f(x) centered at a.

Remark: We hope that the sum of the Taylor series for f(x) is equal to f(x). In many
nice cases, it is. Taylor’s inequality (Taylor’s error formula) can help us figure out when that
happens.
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Geometric Series

Definition: The series
∞∑
n=0

an is a geometric series with ratio r if for every n we have

an+1

an
= r; in other words, an+1 = anr.

If
∞∑
n=0

an is a geometric series with ratio r, we can write

a1 = a0r a2 = a1r = (a0r)r = a0r
2 a3 = a2r = (a0r

2)r = a0r
3 · · · an = a0r

n.

Therefore, we can write the series as

∞∑
n=0

an =
∞∑
n=0

a0r
n = a0

∞∑
n=0

rn.

But
∞∑
n=0

xn is just the Taylor series centered at 0 for the function f(x) =
1

1− x
, and we have

already seen that

lim
n→∞

n∑
k=0

xk = lim
n→∞

1− xn+1

1− x
=


1

1− x
if |x| < 1;

divergent if |x| ≥ 1.

This gives us the following proposition.

Proposition:

If
∞∑
n=0

an is a geometric series with ratio r and first term a0, then

∞∑
n=0

an =


a0

1− r
if |r| < 1;

divergent if |r| ≥ 1.

Some Rules for Series

There is an extensive theory of sequences and series, most of which we will not see in
Math 8. In this section, we state a few rules that should make sense. This is not a collection
of facts to memorize. This is reassurance that your common sense conclusions about series
and sequences are generally valid.
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Generally the limits A and B in these rules are assumed to be numbers. The rules
also apply to limits of ∞ and −∞, as long as the expression you are evaluating is defined
(∞ +∞ = ∞) rather than undefined (∞−∞ is undefined). Be warned that the quotient
∞
0

is undefined, not ∞. That is because if an approaches ∞ and bn approaches 0 while

oscillating between positive and negative values, then
an
bn

will also oscillate between positive

and negative values, and therefore will not approach ∞.
You are free to use these rules in any homework or exam problem (unless the instructions

say otherwise, such as, “use the definition of limit.”) You do not have to cite the rule by
name, as long as you make clear what fact you are using.

1. (constant multiple rule)

If c is a constant, then (∑
n→∞

an = A

)
=⇒

∑
n→∞

(can) = cA.

2. (addition and subtraction rules)(∑
n→∞

an = A &
∑
n→∞

bn = B

)
=⇒

∑
n→∞

(an ± bn) = A±B.

3. (tail end rule)
∞∑
n=0

an converges ⇐⇒
∞∑
n=k

an converges.

In fact,
∞∑
n=0

an = a0 + a1 + · · ·+ ak−1 +
∞∑
n=k

an.

4. (comparison rule)

If an ≤ bn for all n, then(∑
n→∞

an = A &
∑
n→∞

bn = B

)
=⇒ A ≤ B.

5. (decreasing terms rule)

If
∞∑
k=0

ak converges, then lim
n→∞

(ak) = 0.

The converse of this is false, as you can see from the series

1 +
1

2
+

1

2
+

1

3
+

1

3
+

1

3
+

1

4
+

1

4
+

1

4
+

1

4
+ · · · ,

which does not converge even though the individual terms do approach zero.
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6. (nonnegative series rule)

If an ≥ 0 for all n, then
∞∑
n=0

an either converges to a finite sum or approaches +∞.

These rules basically follow from applying sequence rules to the sequences of partial sums.
For example, the nonnegative series rule follows from the monotone sequence theorem, since
if an ≥ 0 for all n, then the sequence of partial sums is an increasing sequence.

Convergence and Power Series

The Ratio Test

You may notice that we have listed many more sequence rules than series rules. This is
because there are many more elementary methods for finding the limit of a sequence than
for finding the sum of a series.

Sometimes, even if we cannot find the sum of a series, we can determine whether the
series converges or not. There are a number of different convergence tests for series. We will
make use of one particular test, the ratio test, which is very useful when we are considering
Taylor series.

In order to understand why the ratio test works, we will also consider some other facts
about convergent series. Be warned, the next proposition applies only to nonnegative series,
which are series with no negative terms.

Proposition: (the comparison test) If 0 ≤ bn ≤ an for all n, then

∞∑
n=0

an converges =⇒
∞∑
n=0

bn converges.

This proposition follows from the fact that a series with nonnegative terms must either
converge or approach infinity. If the larger series does not approach infinity, the smaller one
cannot do so either, so it must converge.

The following definition turns out to be useful.

Definition: The series
∞∑
n=0

an is absolutely convergent if the series
∞∑
n=0

|an| is convergent.

The reason it is useful is the following proposition.

Proposition: If
∞∑
n=0

an is absolutely convergent, then it is convergent.

This proposition follows from things we have already noted. By the sum rule, we can
break up a series into the sum of its positive terms and the sum of its negative terms, and
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show each of those series converges by comparison to the sum of the absolute values of the
terms. (There are more details in the last section.)

Be warned that the converse of this proposition is false. There are some series that are
convergent but not absolutely convergent. The alternating harmonic series,

∞∑
n=1

(
(−1)n+1

(
1

n

))
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · ,

is one important example.

We can use this proposition to prove
∞∑
n=0

an converges by proving
∞∑
n=0

|an| converges.

This is often easier, because we have tests such as the comparison test that apply only to
nonnegative series.

We are now set up to state and prove the ratio test:

Proposition: (the ratio test for nonnegative series) If an ≥ 0 for all n, and

lim
n→∞

an+1

an
= L,

then

∞∑
n=0

an is


convergent if L < 1;

divergent if L > 1;

we cannot tell from this test if L = 1.

We can rephrase this using our earlier proposition that absolutely convergent sequences
are always convergent.

Proposition: (the ratio test) For any series, if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,

then

∞∑
n=0

an is


absolutely convergent if L < 1;

divergent if L > 1;

we cannot tell from this test if L = 1.

There is a proof of the ratio test in the last section. Intuitively, if we have a nonnegative

series with lim
n→∞

an+1

an
=

1

2
, then a tail end of the series behaves very much like a geometric

series with ratio
1

2
, which converges. On the other hand, if lim

n→∞

an+1

an
= 2, then eventually
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the terms of the series are getting larger and larger, and the sum of larger and larger numbers
must approach +∞.

Radius of Convergence

Taylor series centered at x = a

∞∑
k=0

f (k)(a)

k!
(x− a)k

are examples of power series centered at x = a

∞∑
k=0

ck(x− a)k (each ck is a constant).

We can use a power series to define a function,

g(x) =
∞∑
k=0

ck(x− a)k,

whose domain is the set of x for which the power series converges.
We hope that the Taylor series for f(x) not only converges, but converges to f(x).
To find the set of x for which a given power series converges, a good place to start is the

ratio test. For example, consider
∞∑
k=0

k(x− 1)k.

To see whether this series converges for a particular value of x, we use the ratio test:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(k + 1)(x− 1)k+1

k(x− 1)k

∣∣∣∣ = lim
k→∞

∣∣∣∣k + 1

k
(x− 1)

∣∣∣∣ =

(
lim
k→∞

∣∣∣∣k + 1

k

∣∣∣∣) |x−1| = |x−1|.

By the ratio test, this power series converges absolutely if |x − 1| < 1 and diverges if
|x−1| > 1; the ratio test doesn’t tell us what happens for |x−1| = 1. Therefore the domain
of the function defined by this power series contains (0, 2), and may or may not contain the
points 0 and 2.

To see whether it contains the endpoints of the interval, we can plug them in and see
what happens. For x = 2, we have

∞∑
k=0

k(x− 1)k =
∞∑
k=0

k(1)k = 0 + 1 + 2 + 3 + · · ·

and for x = 0 we have

∞∑
k=0

k(x− 1)k =
∞∑
k=0

k(−1)k = 0− 1 + 2− 3 + · · ·
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both of which diverge. Therefore the domain of this function is (0, 2).

In general, we can apply the ratio test to the power series
∞∑
k=0

ck(x− a)k and get

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1(x− a)k+1

ck(x− a)k

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1

ck
(x− a)

∣∣∣∣ =

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣) |x− a|.

If

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣) = Q, then we get

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = Q|x− a|,

and the power series converges absolutely when

Q|x− a| < 1, or |x− a| < 1

Q
,

and diverges if

Q|x− a| > 1, or |x− a| > 1

Q
.

We call R =
1

Q
the radius of convergence. (If Q = 0 the radius of convergence is +∞,

and if Q = +∞ the radius of convergence is 0.) The power series converges absolutely for
|x − a| < R and diverges for |x − a| > R. For |x − a| = R, it may converge or diverge,
depending on the power series.

It turns out that power series always behave this way, even if

(
lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣) does not

converge.

Proposition 0.1. A power series
∞∑
k=0

ck(x− a)k always has a radius of convergence R with

0 ≤ R ≤ ∞. The power series converges absolutely for |x − a| < R and diverges for
|x− a| > R.

If R = 0 the power series converges only for x = a and if R =∞ it converges for all x.
For 0 < R <∞, the set of x for which the power series converges is one of the intervals

(a−R, a + R), [a−R, a + R), (a−R, a + R], or [a−R, a + R].

This is called the interval of convergence of the series.

This proposition tells us nothing about what function the power series converges to.

Sums of Taylor Series

There are at least three methods to determine what a Taylor series converges to.
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Special Examples

We might recognize a series we know about, or a series we can analyze in some clever

way. For example, the Maclaurin series for f(x) =
1

x2 + 1
is

1− x2 + x4 − x6 + · · · .

This is a geometric series with first term 1 and ratio r = −x2, so we know it converges to
1

1− (−x2)
=

1

x2 + 1
= f(x) for | − x2| < 1 (that is, for |x| < 1) and diverges for |x| ≥ 1.

For x = 1 or x = −1 we can substitute 1 or −1 for x, and see that the series we get
(1− 1 + 1− 1 + 1 · · · ) diverges.

Taylor’s Inequality

In our study of Taylor polynomials, we have shown that if Pn(x) is the nth degree Taylor
polynomial for f(x) centered at x = a, and Bn+1 is a bound on |f (n+1)(u)| for u between x
and a, then

|f(x)− Pn(x)| ≤ Bn+1

(n + 1)!
|x− a|n+1.

If we can show that

lim
n→∞

Bn+1

(n + 1)!
|x− a|n+1 = 0,

then we will have shown that

lim
n→∞

|f(x)− Pn(x)| = 0,

or
lim
n→∞

Pn(x) = f(x).

For example, suppose f(x) = sin(x). Then the nth derivative of f(x) is either ± sin(x) or
± cos(x), and has absolute value at most 1. Therefore, we have Bn+1 = 1 for every n, and

lim
n→∞

Bn+1

(n + 1)!
|x− a|n+1 = lim

n→∞

|x− a|n+1

(n + 1)!
= 0.

To see this, note that for any particular x the quantity |x − a| is a constant, and we have

already seen that lim
n→∞

cn

n!
= 0.

Therefore, for every value of x, the Taylor series for sin(x) centered at a converges to the
value sin(x). In particular, for a = 0 we get the Maclaurin series for sin(x), so we can say

sin(x) =
∞∑
k=0

(−1)k
(
x2k+1

k!

)
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · .
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This means that for any x we can approximate sin(x) as closely as we like by using a
Maclaurin polynomial of degree n if n is large enough. We can also go back to Taylor’s
inequality to see how large n has to be, for any given value of x and desired level of accuracy.

Integrals and Derivatives

We will see this method next time.

Proof That the Ratio Test Works: To prove the ratio test proposition, we first prove
that absolutely convergent series are convergent.

Suppose that
∞∑
n=0

|an| converges. We define two new series, one including all the positive

terms of our original series, and the other including all the (absolute values of) negative
terms:

bn =

{
an if an ≥ 0;

0 if an < 0.
cn =

{
0 if an ≥ 0;

−an if an < 0.

It is not hard to check that for every n we have:

(1.) 0 ≤ bn ≤ |an| (2.) 0 ≤ cn ≤ |an| (3.) an = bn − cn (4.) |an| = bn + cn.

From (1.) we see that
∞∑
n=0

bn is a positive series, and since
∞∑
n=0

|an| converges, it follows

from the comparison test that
∞∑
n=0

bn also converges. Let its sum be B.

From (2.) we see that
∞∑
n=0

cn is a positive series, and since
∞∑
n=0

|an| converges, it follows

from the comparison test that
∞∑
n=0

cn also converges. Let its sum be C.

From (3.) and the subtraction rule for series, we see that

∞∑
n=0

an =
∞∑
n=0

(bn − cn) = B − C.

In particular,
∞∑
n=0

an converges.

Now we prove the ratio test. Suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.
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First, suppose that L > 1, and choose ε > 0 small enough that L − ε > 1. By the

definition of limit, there is some N such that whenever n > N we have

∣∣∣∣an+1

an

∣∣∣∣− L < ε. This

means that ∣∣∣∣an+1

an

∣∣∣∣ > L− ε > 1,

and that means that |an+1| > |an|. Since the individual terms of the series are getting larger
in absolute value, they are not approaching zero, and so the series must diverge.

Now, suppose that L < 1, and choose ε > 0 small enough that L + ε < 1. By the

definition of limit, there is some N such that whenever n > N we have

∣∣∣∣an+1

an

∣∣∣∣− L < ε. This

means that ∣∣∣∣an+1

an

∣∣∣∣ < L + ε.

Consider the series,
∞∑

n=N+1

|an|.

For this series, we have
|an+1|
|an|

< L + ε,

|an+1| ≤ (L + ε)|an|,

which means the terms of the series are less than or equal to the terms of a geometric series
with first term aN+1 and ratio L + ε. Since L + ε < 1, this geometric series converges, and

therefore the smaller series
∞∑

n=N+1

|an+1| also converges.

Since a tail end of the series
∞∑
n=0

|an| converges, the series itself converges. This means

the original series
∞∑
n=0

an is absolutely convergent, and therefore it is convergent.
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