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Applications of Integration Day 6

Here are a few important applications of integration.
You may see any of these applications in Math 8, but you should pay

attention to more than the specific formulas. You should also understand
how these applications are developed. You can count on seeing at least one
exam problem that asks you to evaluate some quantity using an integral, by
first approximating the quantity you are interested in by a sum and then
taking a limit. There are several examples of this process here.

The Net Change Theorem (for functions of time): This is just the Funda-
mental Theorem of Calculus, applied. The Fundamental Theorem of Calculus
tells us that, if F has a continuous derivative on the interval [a, b], then∫ b

a

F ′(t) dt = F (b)− F (a).

If t represents time, and F (t) represents some quantity that changes over
time, then F ′(t) represents the rate of change of F (t) (with respect to time),
and F (b)− F (a) represents the net change in F (t) between times t = a and
t = b.

(“Net change” means that we allow decreases and increases to cancel each
other out. For example, if the temperature is −15 degrees at 7 AM, rises to
13 degrees at 2 PM, and then drops to 11 degrees at 7 PM, then between
7 AM and 7 PM the temperature rises by 28 degrees and then falls by 2
degrees, and the net change is 26 degrees; a positive net change denotes an
increase.1)

This is what the Net Change Theorem says. Quoting directly from Stew-
art’s calculus textbook2:

Net Change Theorem. The integral of a rate of change is the net
change: ∫ b

a

F ′(x) dx = F (b)− F (a) .

1I got these numbers from the Weather Underground forecast for January 8, 2015 in
Hanover, New Hampshire; degrees are in Fahrenheit.

2Stewart, James. Calculus, seventh edition. Cengage Learning, 2012.
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In particular, the Net Change Theorem tells us that the integral of veloc-
ity is distance: For an object traveling along a straight path (with positive
and negative directions chosen), if F (t) denotes the distance from the start-
ing point at time t, then F ′(t) denotes velocity, the rate of change of distance
with respect to time, and the integral of the velocity between times t = a
and t = b ∫ b

a

F ′(t) dt

denotes the net distance traveled between times t = a and t = b.

Average Value: The average value of a function f(x) for x in the interval
[a, b] is given by

1

b− a

∫ b

a

f(x) dx .

This is very like the formula for computing the average of finitely many
numbers: To find the average of a finite set of numbers, add up the numbers,
and divide by the size of the set. To find the average value of a function f(x)
on an interval, use an integral to “total up” the values of f , and divide by
the length of the interval.

We could approach this more formally: To approximate the average value
of f(x) on the interval [a, b], divide the interval [a, b] into a large number of
equal subintervals (say n subintervals), choose a point xi in the ith subinterval
for i = 1, 2, . . . n, and take the average of the values f(xi). This gives us

1

n

n∑
i=1

f(xi) =
1

b− a
b− a
n

n∑
i=1

f(xi) =
1

b− a

n∑
i=1

f(xi)
b− a
n

=

1

b− a

n∑
i=1

f(xi)∆x,

where ∆x =
b− a
n

is the size of the subintervals. This sum is just the

“Riemann sum” that we used to approximate the area under a curve. When
we compute the average as the limit of closer and closer approximations as
n→∞, we get(

1

b− a

)
lim
n→∞

(
n∑

i=1

f(xi)∆x

)
=

1

b− a

∫ b

a

f(x) dx.
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Note: Formal computations, such as the derivation of the formula for average
value above, of interest not only to theoretical mathematicians. If you are
using calculus in engineering or economics or medical research, you don’t
want to be limited to the applications of integration on some list; you want
to know how to recognize a new application of integration “in the wild,” so
to speak. You recognize a potential application of integration by seeing that
you can approximate the thing you’re interested in as a sum of small pieces,
and get a better approximation by using a larger number of smaller pieces.
Then, some computation like this is needed to tell you exactly what integral
you should use to compute that thing you’re interested in.

In this course, we will sometimes expect you to derive these formulas,
such as this formula for average value, not just to apply them. In a physics
or engineering course, you will often have to do problems, such as some of the
computations of work in the section on “other applications,” that essentially
require you to figure out the appropriate integral in this way.

The following sections will sometimes give these formal computations,
and sometimes give more intuitive arguments. You might try to provide the
formal computation when it is not included.

Volumes by Slicing: Suppose we want to find the volume of a solid object
occupying the region in space between x = a and x = b, where x is measured
along some straight axis.

We can approximate the volume of the object by cutting it, perpendicu-
lar3 to the x-axis, into many thin slices of thickness ∆x. The volume of each
thin slice can be approximated by the cross-sectional area A(xi) at some
particular point xi on the ais, times the thickness ∆x of the slice. (Here we
are setting A(x) to be the area of the slice we get at point x, or the cross-
sectional area at x.) Then we can approximate the volume of the object by
adding up these approximate volumes A(xi)∆x of the slices,

V ≈
n∑

i=1

A(xi)∆x,

and find the exact volume by taking the limit as the number of slices ap-
proaches infinity

V = lim
n→∞

(
n∑

i=1

A(xi)∆x

)
.

3It is important that our slices are perpendicular to the axis.
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We recognize this as the limit of Riemann sums, and therefore we know we
can say,

V = lim
n→∞

(
n∑

i=1

A(xi)∆x

)
=

∫ b

a

A(x) dx.

We have shown we can find the volume of our object by integrating the
object’s cross-sectional area between x = a and x = b. More precisely,
suppose A(x) is the cross-sectional area at x; that is, the cross-sectional area
we get if we slice the object at the point x, perpendicularly to the axis. Then
the volume of the object is given by

V =

∫ b

a

A(x) dx .

We can also give an informal argument that this makes sense. If the
cross-sectional area is the same at every point, the volume of the object is
the product of its length and its cross-sectional area. For example, a cylinder
of length h and cross-section a circle of radius r has volume V = πr2h, a
formula that may be familiar. It makes sense that if the cross-sectional area
varies, you could possibly get the volume by multiplying the length by the
average cross-sectional area. Using the formula for average value, we get

V = (b− a)
1

b− a

∫ b

a

A(x) dx =

∫ b

a

A(x) dx.

Warning: Informal arguments like this can sometimes lead us astray;
that is why we need precise mathematical arguments. Our intuition can
mislead us — in real life, all too many things that make sense turn out not
to be true — and therefore the reasoning with approximations and limits is
not only more formal but also more reliable.

For example, you might want to check that if you try to calculate the
volume of the solid obtained by revolving the function y = f(x) for a ≤ x ≤ b
around the x-axis by taking the average value C of f(x) on that interval,
and then finding the volume of the solid obtained by revolving the constant
function g(x) = C for a ≤ x ≤ b around the x-axis, you will get the wrong
answer. (Try it in the simple case f(x) = x, a = 0, b = 1.)
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