Assignment on Lines

1. Find the vector and parametric equations for the line through the point $P=(2,5,-1)$ and parallel to the vector $\mathbf{v}=\langle-3,1,2\rangle$.
2. Find the vector and parametric equations for the line through the point $P=(5,8,-6)$ and parallel to the vector $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$.
3. Find the vector and parametric equations for the line through the points $P=(4,1,-8)$ and $Q=(2,3,5)$.
4. Find the angle between the lines l_{1} and l_{2} given by:
$l_{1}: \mathbf{r}=\langle 1-2 t, 3+t, 4-5 t\rangle$ and $l_{2}: \mathbf{r}=\langle 2-s, 1-2 s, 3+2 s\rangle$.
5. Find the parametric equations of the line through $(3,-1,2)$ and parallel to the line $\mathbf{r}=\langle 2-3 t, 7+t, 8+5 t\rangle$.
6. Find the vector form of the line through the point $(5,2,-3)$ and orthogonal to the lines $\mathbf{r}=\langle 2+t, 3-2 t, 4-5 t\rangle$ and $\mathbf{r}=\langle 1-t, 2 t, 3+4 t\rangle$.
7. Determine whether the lines l_{1} and l_{2} are parallel, skew, or intersecting. If they intersect, find their point of intersection.
(a) $l_{1}: x=4-t, y=2 t, z=3+4 t$, and $l_{2}: x=2+3 s, y=1-s, z=4+s$.
(b) $l_{2}: \mathbf{r}=\langle 3-4 t, 2+t, 2 t\rangle$, and $\mathbf{r}=\langle 3+2 s, 1-s, 8+3 s\rangle$
