Assignment 19: More matrix equations and inverses

1. Show that $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 1 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right)$ is solvable for all choice of b_{i}. Hint: the row-reduced echelon form of the 4×5 matrix is $R=\left(\begin{array}{ccccc}1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$. Moreover, show that for each choice of $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right)$, there are infinitely many solutions.
2. Find all $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5}\end{array}\right)$ for which
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 5 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5}\end{array}\right)$ is solvable.
Find all solutions to $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 5 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$
3. Let $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 4\end{array}\right)$.

Use row reduction to find the inverse of A, and solve the matrix equation $A \mathbf{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ both by using the inverse of A, and by row reducing the augmented matrix.

