Practice Set for Exam 2, Math 9

1. Find the Maclaurin series of $\ln (1+x)$. What is its radius of convergence? You must justify your answers.
2. Use the Maclaurin series of e^{x} and the fact that $e<3$ to evaluate $e=e^{1}$ with an error smaller than 0.01.
3. Use the fact that the Maclaurin series for e^{x} is

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

to find the Maclaurin series for $\frac{e^{x}+e^{-x}}{2}$.
4. The two points $A(1,2,3)$ and $B(0,-1,1)$ determine a line, L. Find
(a) The vector equation of L.
(b) The parametric equations of L.
(c) The symmetric equations of L.
5. Given the line L with vector equation $\mathbf{r}(t)=<t, t, t>$ and the point $P(0,0,1)$, find a line through P which intersects the line L and is perpendicular to L.
6. Let $\mathbf{u}(t)=\left\langle u_{1}(t), u_{2}(t), u_{3}(t)\right\rangle$ and $\mathbf{v}(t)=\left\langle v_{1}(t), v_{2}(t), v_{3}(t)\right\rangle$ be differentiable vector-valued functions. Prove that $\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})=\mathbf{u}^{\prime} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{v}^{\prime}$.
7. Let $\mathbf{v}=<1,2,-3>$ and $\mathbf{w}=<3,5,10>$. Find the vector projection of \mathbf{v} onto \mathbf{w}.
8. Find the angle between a diagonal of a cube and one of its edges.
9. Fine the volume of the parallelepiped determined by the vectors

$$
\mathbf{v}=<1,3,0>, \mathbf{w}=<7,1,2>, \text { and } \mathbf{u}=<0,2,5>
$$

10. Find the following limit knowing that it exists

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}+x^{2} y^{2}}{x^{2}+y^{2}} .
$$

