1. (14) Find the radius of convergence and interval of convergence of

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n \, 5^n}$$

$$= \frac{1}{n \rightarrow \infty} \left| \frac{\chi - 2}{(1 + \frac{1}{n})} \right| = \left| \frac{\chi - 2}{5} \right|$$

By eatio test the series is cgt if

1x-21<5 & dept if [x-2]75

Hence readins of convergence = 5.

End pb:
$$\chi = -3$$
 $\frac{1}{2} \frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$

2. (10) Find a power series representation for the following function and find its interval of convergence:

$$f(x) = \frac{x}{3 - x^2}$$

$$\frac{\chi}{3-\chi^2} = \chi \left(\frac{1}{3-\chi^2}\right)$$

$$= \chi \left(\frac{1}{3(1-\chi^2/3)}\right)$$

$$= \frac{\chi}{3} \left(\frac{2}{3(3)}\right)^n \qquad \text{if } \left(\frac{\chi^2}{3}\right) < 1$$

$$= \frac{2}{3} \left(\frac{\chi^2}{3}\right)^n \qquad \text{if } \left(\frac{\chi^2}{3}\right) < 1$$

$$= \frac{2}{3} \frac{\chi^2}{3nt1}$$

3. (14) Find the first 2 nonzero terms in the Maclaurin series for $f(x) = \sec x$.

$$\frac{1}{2}(x) = \frac{1}{\cos x}$$

$$\frac{1}{2}(x) = \frac{1}{2} \cot x + \cos x$$

$$\frac{1}{2}(0) = 0$$

$$1+1x^{2} = 1+\frac{x^{2}}{2}$$

4. (10) Find a vector that has the same direction as $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ but has length 3.

It is the boundary is
$$\langle t, t, 2t \rangle$$

Then

Then

 $\int t^2 + t^2 + t^2 = 3$
 $\Rightarrow \int 6t^2 = 3$
 $\Rightarrow t^2 = 3/2$
 $\Rightarrow t = \pm \sqrt{3}/2$.

There were is $\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{2\sqrt{3}}{2}\right)$

5. (10) Find the scalar and vector projections of $\mathbf{b} = \langle 3, 0, 2 \rangle$ onto $\mathbf{a} = \langle -2, 1, -1 \rangle$.

scalar projection do
$$\vec{b}$$
 onto \vec{a} \vec{b}

$$\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{-6-2}{|\vec{k}+1|+1} = \sqrt{\frac{8}{5}}$$
vertex proj \vec{c} do \vec{b} onto \vec{a} $= \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}$

$$= -\frac{8}{56} \frac{(-2,1,-17)}{56}$$

$$= -\frac{8}{6} \frac{(-2,1,-17)}{36}$$

$$= -\frac{8}{6} \frac{(-2,1,-17)}{36}$$

$$= -\frac{8}{6} \frac{(-2,1,-17)}{36}$$

6. (12) Find parametric equations for the line through the point (0, 14, -10) and parallel to the line x = -1 + 2t, y = 6 - 3t, z = 3 + 9t

parallel veeds = (2, -3, 9) 26 = (0, 14, -10)parameteri eggs 2 = 0 + 2t = 2t 2 = 14 - 3t2 = -10 + 9t 7. (14) Let P be the plane passing through A = (0, 1, 1), B = (2, -1, 3) and C = (1, 1, -2). Find an equation of the plane passing through (4, -2, 3) and parallel to the plane P. Write the equation in the form of ax + by + cz = d.

$$\overrightarrow{AB} = \langle 2, -2, 27 \rangle$$
 $\overrightarrow{AB} = \langle 1, 0, -3 \rangle$
 $\overrightarrow{AB} \times \overrightarrow{AE} = \begin{vmatrix} 1 & j & k \\ 2 & -2 & 2 \\ 1 & 0 & -3 \end{vmatrix}$
 $= \langle 6, 8, 2 \rangle$

normal vertex to P is $\langle 6, 8, 2 \rangle$
 eq^{n} of the plane
$$6(x-4) + 8(y+2) + 2(z-3) = 0$$

$$6x + 8y + 2z = 14$$

8. (16) For each of the following statements, fill in the blank with the letters \mathbf{T} or \mathbf{F} depending on whether the statement is true or false. You do not need to show your work and no partial credit will be given on this problem.

(a)
$$e^3 = \sum_{n=0}^{\infty} \frac{3^n}{3!}$$

$$e = \frac{5}{2} \frac{n!}{n!}$$

ANS. F

(b) The interval of convergence for the power series of f(x) = ln(1+x) is (-1,1).

(c) Let θ be the angle between $a=\langle 1,2,3\rangle$ and $b=\langle -5,1,0\rangle$, then $\theta>\frac{\pi}{2}$

$$(\mathrm{d})\ |\mathbf{a}\times\mathbf{a}|=(|\mathbf{a}|)^2.$$

ANS: F