
Math 8: Calculus in one and several variables
Spring 2017 - Homework 1

Return date: Wednesday 04/05/17

keywords: Taylor polynomials, remainder estimate, geometric series

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete
sentences and label any diagrams. Please show your work; no credit is given for solutions without
work or justi�cation.

exercise 1. (3 points) Find the Taylor polynomial T3(x), for the function f(x) at a.

a) f(x) = 1 + x2 + x4 at a = 2.
Solution: We have to �nd the Taylor polynomial T3(x) of degree 3 at x = 2. We can �nd
the coe�cients for the powers of (x− 2) using a table:

kth derivative f (k)(x) f (k)(2) f (k)(2)
k!

0: f(x) 1 + x2 + x4 21 21
1: f ′(x) 2x+ 4x3 36 36
2: f ′′(x) 2 + 12x2 50 50

2! = 25

3: f (3)(x) 24x 48 48
3! = 8

Hence

T3(x) = f(2) + f ′(2)(x− 2) +
f ′′(2)

2!
(x− 2)2 +

f (3)(2)

3!
(x− 2)3

= 21 + 36(x− 2) + 25(x− 2)2 + 8(x− 2)3.

b) f(x) = ex
2
at a = 1.

Solution: We have to �nd the Taylor polynomial T3(x) of degree 3 at x = 1. Again we
can �nd the coe�cients for the powers of (x− 1) using a table:

kth derivative f (k)(x) f (k)(1) f (k)(1)
k!

0: f(x) ex
2

e1 = e e

1: f ′(x) 2xex
2

2e 2e

2: f ′′(x) (4x2 + 2)ex
2

6e 6e
2! = 3e

3: f (3)(x) (8x3 + 12x)ex
2

20e 20e
3! = 10e

3

Hence

T3(x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 +

f (3)(1)

3!
(x− 1)3

= e+ 2e(x− 1) + 3e(x− 1)2 +
10e

3
(x− 1)3.
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exercise 2. (4 points) For each of the following problems, write out enough terms of the
100th Taylor polynomial

T100(x) = c0 + c1x+ c2x
2 + · · ·+ c100x

100

for the function f(x) at the point a, to make the pattern obvious. Then write down an explicit
expression for cn.

a) f(x) = e2x at a = 0.
Solution: We can make a table to �nd the pattern:

kth derivative f (k)(x) f (k)(0) f (k)(0)
k!

0: f(x) e2x e2·0 = e0 = 1 1
1: f ′(x) 2e2x 2 · 1 = 2 2

2: f ′′(x) 22 · e2x 22 22

2!

3: f (3)(x) 23 · e2x 8 23

3!

n: f (n)(x) 2n · e2x 2n 2n

n!

Hence cn = f (n)(0)
n! = 2n

n! and

Tn(x) = 1 + 2x+
22

2!
x2 +

23

3!
x3 + ....+

2n

n!
xn.

b) f(x) = ln(x+ 1) at a = 0.
Solution: Again we make a table to �nd the pattern:

kth derivative f (k)(x) f (k)(0) f (k)(0)
k!

0: f(x) ln(x+ 1) ln(1) = 0 0
1: f ′(x) 1

x+1 1 1

2: f ′′(x) −1
(x+1)2

−1 −1
2! = −1

2

3: f (3)(x) (−1)·(−2)
(x+1)3

1 · 2 2
3! =

1
3

4: f (4)(x) (−1)·(−2)·(−3)
(x+1)4

−1 · 2 · 3 −1·2·3
4! = −1

4

n: f (n)(x) (−1)n+1·(n−1)!
(x−1)n (−1)n+1 · (n− 1)! (−1)n+1·(n−1)!

n! = (−1)n+1

n

Hence cn = (−1)n+1·(n−1)!
n! = (−1)n+1

n for all n ≥ 1 and

Tn(x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + ....+

(−1)n+1

n
xn.
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exercise 3. (3 points)

a) Find the Taylor polynomial T3(x), for the function

f(x) = x · ln(x) at the point a = 1.

Solution: Using the method from exercise 1 and 2 we �nd that

T3(x) = (x− 1) +
1

2
(x− 1)2 − 1

6
(x− 1)3,

where f ′(x) = ln(x) + 1, f ′′(x) = 1
x , f

(3)(x) = − 1
x2
.

b) For the values 0.8 ≤ x ≤ 1.2 estimate the accuracy of the approximation using the remain-
der estimate

|R3(x)| = |f(x)− T3(x)|

in Taylor's inequality (Theorem 11.10.9 of the book). Justify your answer.
Solution: Taylor's inequality states that if |f (4)(x)| ≤ M for all x satisfying |x − 1| ≤ d.
Then

|R3(x)| = |f(x)− T3(x)| ≤
M

4!
· |x− 1|4

for all x, such that |x− 1| ≤ d.
We are interested in the interval 0.8 ≤ x ≤ 1.2 which is equivalent to |x− 1| ≤ 0.2.
So it remains to estimate |f (4)(x)| =

∣∣ 2
x3

∣∣ in this interval. As 2
x3

is a monotonically
decreasing function for 0.8 ≤ x ≤ 1.2, its maximum is attained at x = 0.8 and∣∣∣∣ 2x3

∣∣∣∣ = 2

x3
≤ 2

0.83
=M for all 0.8 ≤ x ≤ 1.2.

Hence

|R3(x)| = |f(x)− T3(x)| ≤
2

4! · 0.83
· 0.24 ' 0.000260.

exercise 4. (3 points) Suppose we use the following estimate for 3 cos(x):

3 cos(x) ' 3− 3

2
x2.

a) Explain why it's okay to estimate the error using either R2(x) or R3(x). (Note that we get
a better estimate using R3(x).)
Solution: We have

f ′(x) = −3 sin(x), f ′′(x) = −3 cos(x), f (3)(x) = 3 sin(x) and f (4)(x) = 3 cos(x).
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In this case we have that T3(x) = T2(x) and additionally

|f (3)(x)| = |3 sin(x)| ≤ 3 =M3 and |f (4)(x)| = |3 cos(x)| ≤ 3 =M4 for all x ∈ R .

With the above bounds we get for all |x| ≤ 1 in Taylor's inequality

|R2(x)| = |f(x)− T2(x)| ≤
3

3!
· |x|3 and |R3(x)| = |f(x)− T2(x)| ≤

3

4!
· |x|4,

as T2(x) = T3(x). The latter inequality is better for |x| ≤ 1. Therefore we can use the
second inequality for our error estimate.

b) Use the boxed statement on page 1 of the Error Estimates handout to get a bound on the
error in computing 3 cos(0.1) using the polynomial above. Show your work.
Solution: From the Taylor inequality for T3(x) we get with |x| ≤ 0.1 ≤ 1:

|R2(x)| = |R3(x)| = |f(x)− T2(x)| ≤
3

4!
· |x|4 ≤ 3

4!
· 0.14 = 0.0000125.

Note: Using the inequality for R2(x) we would only get |R2(x)| ≤ 0.0005.

exercise 5. (3 points) Determine whether the geometric series is convergent or divergent. If
it is convergent, �nd its sum:

a)
∑∞

n=0
5
πn .

Solution: We rewrite the sum as 5 ·
∑∞

n=0

(
1
π

)n
. As 1

π < 1 this sum converges and by
Ch. 11.2 Theorem 4 of the book we have that

5 ·
∞∑
n=0

(
1

π

)n
=

5

1− 1
π

=
5π

π − 1
.

b)
∑∞

n=0
3n+1

(−2)n .
Solution: We rewrite the sum in the following way:

∞∑
n=0

3n+1

(−2)n
= 3 ·

∞∑
n=0

3n

(−2)n
= 3 ·

∞∑
n=0

(
3

−2

)n
.

This series is divergent as
∣∣∣ 3
−2

∣∣∣ = 3
2 > 1 and the geometric series is divergent for |x| ≥ 1.
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exercise 6. (4 points) Find the values of x for which the series converges. Find the sum of
the series for those values of x.

a)
∑∞

n=1(x+ 2)n.
Solution 1: We can use the ratio test (see Ch. 11.6, page 779): For an = (x+ 2)n we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(x+ 2)n+1

(x+ 2)n

∣∣∣∣ = |x+ 2|.

By the ratio test we conclude that the series converges if limn→∞

∣∣∣an+1

an

∣∣∣ = |x + 2| < 1.

This is the interval −3 < x < −1. The series diverges for |x+ 2| > 1. By plugging in the
points x = −3 and x = −1 we see that the series diverges in these points.
Solution 2: Alternatively we could also argue that for y = (x + 2) this is the geometric
series which is convergent for |y| < 1 which is equal to |x+2| < 1 and divergent for |y| ≥ 1
which is equal to |x+ 2| ≥ 1.
Finally, as this is a geometric series, we have with y = x+ 2:

∞∑
n=1

(x+ 2)n =
∞∑
n=0

(x+ 2)n − 1 =
1

1− (x+ 2)
− 1 =

−1
x+ 1

− 1 = −x+ 2

x+ 1
.

b)
∑∞

n=0
2n

xn .
Solution 1: We can use again the ratio test. For an =

(
2
x

)n
we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(
2
x

)n+1(
2
x

)n
∣∣∣∣∣ =

∣∣∣∣2x
∣∣∣∣ .

By the ratio test we conclude that the series converges if | 2x | < 1 or |x| > 2. This is equal to
x ∈ (−∞,−2) or x ∈ (2,∞). By the ratio test the series diverges for |x| < 2. By plugging
in the points x = −2 and x = 2 we see that the series diverges in these points.
Solution 2: Alternatively we could also argue that for y = 2

x this is the geometric series
which is convergent for |y| < 1 which is equal to |x| > 2 and divergent for |y| ≥ 1 which is
equal to |x| ≤ 2.
Again, as this is a geometric series, we get

∞∑
n=0

2n

xn
=

1

1− 2
x

=
x

x− 2
.


