
Math 8: Calculus in one and several variables
Spring 2017 - Homework 2

Return date: Wednesday 04/12/17

keywords: ratio test, di�erentiation and integration of power series, Taylor series

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete
sentences and label any diagrams. Please show your work; no credit is given for solutions without
work or justi�cation. Be sure to staple your homework.

exercise 1. (3 points) Determine whether the following series are convergent or not.

a)
∞∑
n=2

n3 + 2n

5n3 + 1
.

Solution: For an = n3+2n
5n3+1

we have

lim
n→∞

an = lim
n→∞

n3 + 2n

5n3 + 1
= lim

n→∞

1 + 2
n2

5 + 1
n3

=
1

5
.

Hence the series is divergent as limn→∞ an 6= 0.

Note: In this case the ratio test is inconclusive as limn→∞

∣∣∣an+1

an

∣∣∣ = 1.

b)
∞∑

n=10

(−2)n

n2
.

Solution: For an = (−2)n
n2 and an+1 =

(−2)n+1

(n+1)2
we have by the ratio test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−2)n+1

·(n+ 1)2
· n2

(−2)n

∣∣∣∣ = lim
n→∞

∣∣∣∣(−2)n+1

(−2)n

∣∣∣∣ · ∣∣∣∣ n2

(n+ 1)2

∣∣∣∣
= lim

n→∞

2n+1

2n
· n2

(n+ 1)2
= 2 · lim

n→∞

n2

(n+ 1)2
= 2 > 1,

as limn→∞
n2

(n+1)2
= 1. Hence the series is divergent by the ratio test.

exercise 2. (4 points) Determine the radius of convergence for the following series.

a)
∞∑
n=0

n2

3n
(x− 4)n.

Solution: For an = n2

3n (x− 4)n and an+1 =
(n+1)2

3n+1 (x− 4)n+1 we have by the ratio test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2 · (x− 4)n+1 · 3n

n2 · (x− 4)n · 3n+1

∣∣∣∣ = |x− 4|
3

· lim
n→∞

(n+ 1)2

n2
=
|x− 4|

3
,
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as limn→∞
(n+1)2

n2 = 1. We obtain by the ratio test:

The series converges if |x−4|3 < 1 or equally |x− 4| < 3.

The series diverges if |x−4|3 > 1 or equally |x− 4| > 3.
Hence the radius of convergence R is R = 3 and the interval of convergence is the interval
of width 3 around the point x = 4.
Note: We could also use the test for the converge of power series directly that says that

for cn = n2

3n we have limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1
3 = 1

R .

b)
∞∑
n=0

(−1)n

2n ·
√
n
(x− 1)2n.

Solution 1: Again we can use the ratio test. We have that an = (−1)n
2n·
√
n
(x − 1)2n and

an+1 =
(−1)n+1

2n+1·
√
n+1

(x− 1)2(n+1). We �rst simplify
∣∣∣an+1

an

∣∣∣:
∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ (−1)n+1 · (x− 1)2(n+1) · 2n ·
√
n

(−1)n · (x− 1)2n · 2n+1 ·
√
n+ 1

∣∣∣∣∣
=

∣∣∣∣ 2n

2n+1

∣∣∣∣ · ∣∣∣∣(x− 1)2n+2

(x− 1)2n

∣∣∣∣ · ∣∣∣∣ √n√
n+ 1

∣∣∣∣ = |x− 1|2

2
·
√
n√

n+ 1
.

Hence

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x− 1|2

2
·
√
n√

n+ 1
=
|x− 1|2

2
· lim
n→∞

√
n√

n+ 1
=
|x− 1|2

2
,

as limn→∞
√
n√
n+1

= 1. We obtain by the ratio test:

The series converges if |x−1|
2

2 < 1 or equally |x− 1| <
√
2.

The series diverges if |x−1|
2

2 > 1 or equally |x− 1| >
√
2.

Hence the radius of convergence R is R =
√
2 and the interval of convergence is the interval

of width
√
2 around the point x = 1.

Solution 2: We could also use the test for the convergence of a power series directly.
However, here we have to be careful, as this is not a regular power series with powers of
|x− 1|n.
We can bypass this problem by substituting y = (x−1)2 and �nd the radius of convergence

for
∑∞

n=0
(−1)n
2n·
√
n
yn. Here we get for the radius of convergence Ry:

For cn = (−1)n
2n·
√
n
we have limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1
2 = 1

Ry
. Hence Ry = 2. Resubstituting we

obtain:
The series converges if |y| < 2 or equally |x− 1|2 < 2⇔ |x− 1| <

√
2.
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exercise 3. (6 points) By manipulating familiar power series (geometric series or series in
Table 1 on page 808), �nd power series representations centered at 0 for the following functions
and determine the radius of convergence.
Do not use the ratio test to determine the radius of convergence. Instead use what you already
know about the convergence properties of the series you are manipulating.

a) f(x) = 5
1−4x2 .

Solution: We substitute with y = 4x2, hence

5

1− 4x2
=

5

1− y
= 5 · 1

1− y
= 5

∞∑
n=0

yn = 5
∞∑
n=0

(4x2)n =
∞∑
n=0

5 · 4n · x2n.

As
∑∞

n=0 y
n is the geometric series, we have: The series converges if |y| < 1 or equally

|4x2| < 1⇔ |x| < 1
2 . The series diverges if |y| > 1 or equally |4x2| > 1⇔ |x| > 1

2 .
Hence the radius of convergence is 1

2 .

b) f(x) = 1
(1+x)2

.

Solution:

1

(1 + x)2
=

(
− 1

1 + x

)′
and − 1

1 + x
= − 1

1− (−x)
= −

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)n+1xn.

Again the latter is a geometric series with radius of convergence equal to 1. Di�erentiation
does not change the radius of convergence by Ch. 11.9 Theorem 2 of the book. This
theorem also states that we obtain the power series for 1

(1+x)2
by di�erentiating the power

series of − 1
1+x term by term. Hence

1

(1 + x)2
=

(
− 1

1 + x

)′
=
∞∑
n=0

(−1)n+1(xn)′ =
∞∑

n=1

(−1)n+1nxn−1.

As di�erentiation does not change the radius of convergence R we have R = 1.

c) f(x) = x2 · tan−1(x3).
Solution: We know the power series expansion for tan−1(y) =

∑∞
n=0

(−1)n
2n+1 · y

2n+1. Its

radius of convergence is R = 1. Using the substitution y = x3 we get:

x2 · tan−1(x3) = x2 ·
∞∑
n=0

(−1)n

2n+ 1
· (x3)2n+1 =

∞∑
n=0

(−1)n

2n+ 1
· x2 · x6n+3 =

∞∑
n=0

(−1)n

2n+ 1
x6n+5.

The factor x2 does not change the radius of convergence of the series, as for a �xed x we
just multiply by the square of x. We get by resubstitution:
The series converges if |y| < 1 or equally |x|3 < 1⇔ |x| < 1.
The series diverges if |y| > 1 or equally |x|3 > 1⇔ |x| > 1.
Hence the radius of convergence is 1.
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exercise 4. (2 points) Use the de�nition of Taylor and Maclaurin series to compute the
terms up to degree 4 of the Maclaurin series for f(x) = 1

(1+x)2
and compare with your answer to

exercise 3b).
Solution: We have to �nd the Taylor polynomial T4(x) of degree 4 at x = 0. We can �nd the
coe�cients for the powers of x using a table:

kth derivative f (k)(x) f (k)(0) f (k)(0)
k!

0: f(x) 1
(1+x)2

1 1

1: f ′(x) −2
(1+x)3

−2 −2
2: f ′′(x) (−2)·(−3)

(1+x)4
2 · 3 2·3

2! = 3

3: f (3)(x) (−2)·(−3)·(−4)
(1+x)5

−2 · 3 · 4 −2·3·4
3! = −4

4: f (4)(x) (−2)·(−3)·(−4)·(−5)
(1+x)6

2 · 3 · 4 · 5 2·3·4·5
4! = 5

Hence

T4(x) = 1− 2x+ 3x2 − 4x3 + 5x4 =

5∑
n=1

(−1)n+1nxn−1 =

4∑
n=0

(−1)n(n+ 1) · xn.

Hence T4(x) is equal to the truncated power series
∑5

n=1(−1)n+1nxn−1 of f(x) at x = 0.

exercise 5. (3 points) For the function f(x) = cos(x).

a) Find the Taylor series for f(x) centered at π
2 . Find the complete series, not just the �rst

few terms.
Solution: We can make a table to �nd the pattern:

kth derivative f (k)(x) f (k)(π2 )
f (k)(π

2
)

k!

0: f(x) cos(x) 0 0
1: f ′(x) − sin(x) −1 −1
2: f ′′(x) − cos(x) 0 0

2! = 0

3: f (3)(x) sin(x) 1 1
3!

4: f (4)(x) cos(x) 0 0
4! = 0

5: f (5)(x) − sin(x) −1 −1
5!

We see that the pattern for the �rst two rows is repeating after four steps. The even
derivatives f (2n)(π2 ) at x = π

2 are always 0. Hence

T2n+1(x) = −(x−
π

2
) +

1

3!
(x− π

2
)3 − 1

5!
(x− π

2
)5 + ....+

(−1)n+1

(2n+ 1)!
(x− π

2
)2n+1.

Hence the Taylor series is
∑∞

n=0
(−1)n+1

(2n+1)! (x−
π
2 )

2n+1.
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b) Find an upper bound for |Rn(x)| = |f(x) − Tn(x)|, the remainder after the nth degree
Taylor polynomial and check that

lim
n→∞

Rn(x) = 0 for every x.

Solution: We �rst �x an interval |x− π
2 | ≤ d of width d around x = π

2 . Taylor's inequality

states that if |f (n+1)(x)| ≤M for all x satisfying |x− π
2 | ≤ d. Then

|Rn(x)| = |f(x)− Tn(x)| ≤
M

(n+ 1)!
· |x− π

2
|n+1

for all x, such that |x− π
2 | ≤ d.

We �rst �nd M : From our table in a) we know that |f (n+1)(x)| = | cos(x)| ≤ 1 or
|f (n+1)(x)| = | sin(x)| ≤ 1. Hence we can take M = 1. Then

|Rn(x)| ≤
1

(n+ 1)!
· |x− π

2
|n+1 ≤ dn+1

(n+ 1)!
.

But for any �xed d we know by Ch. 11.10 inequality 10 (page 802) that

lim
n→∞

dn+1

(n+ 1)!
= lim

n→∞

dn

n!
· d

n+ 1
= 0.

Hence limn→∞ |Rn(x)| = 0 by the Squeeze Theorem. As d can be chosen arbitrarily we
have convergence for all x ∈ R.
Thus the Taylor series converges to the function cos(x) everywhere.

exercise 6. (2 points) Find the sums of the following series by associating them to a Taylor
series. Hint: Look at Table 1 on page 808 of the book.

a)
∞∑
n=0

x4n+1

n!
.

Solution: We can modify the sum in the following way:
∞∑
n=0

x4n+1

n!
=
∞∑
n=0

x · (x
4)n

n!
= x ·

∞∑
n=0

(x4)n

n!
= x ·

∞∑
n=0

yn

n!
= x · ey = x · ex4 .

Here we use the substitution y = x4 and the fact that the Taylor series for ey is
∑∞

n=0
yn

n! .

b)
∞∑
n=0

(−1)n

(2n)!
.

Solution: By comparison with the power series on page 808 we see that this is the Maclau-
rin series for cos(x) at x = 1. Hence

cos(1) =

∞∑
n=0

(−1)n

(2n)!
= 1− 1

2
+

1

4!
− 1

6!
+

1

8!
+ ...+ ....


