1. (Optimization).
(a) Find and classify all local extreme points of $f(x, y)=x^{2}+x+2 y^{2}$ on the domain $x^{2}+y^{2}<1$.
(b) Determine the absolute maximum and minimum of $f(x, y)=x^{2}+x+2 y^{2}$ on the domain $x^{2}+y^{2} \leq 1$. Be sure to indicate both the maximum and minimum values as well as the coordinates of all points at which they occur.
2. Suppose that $z=f(x, y), x=u v$ and $y=u+3 v$. Assume that when $u=2$ and $v=1$, $\frac{\partial z}{\partial u}=-2$ and $\frac{\partial z}{\partial v}=-1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
3. Find an equation of the plane which is perpendicular to the line $x=2-t, y=2 t$, $z=3+t / 2$, and which contains the line $x=4+2 s, y=-1+3 s, z=2-8 s$.
4. Consider the surface $x^{2}+y^{2}+z^{2}=9$. Find the point of intersection of the tangent plane to the surface at the point $(1,2,2)$ and the x-axis.
5. Find the maxima and minima of $f(x, y, z)=x y z$ subject to the constraint $g(x, y, z)=$ $x^{2}+2 y^{2}+3 z^{2}=6$.
6. Write an equation for the tangent plane to the level surface $f(x, y, z)=z e^{x y}+x e^{y z}=2$ at the point $(1,0,1)$.
7. What is the arclength of the curve $y=\ln (\cos (x))$ for x from 0 to $\pi / 4$.
8. Find the absolute extrema of $f(x, y)=e^{x y}+e^{x}$ in the first quadrant of the $x y$-plane.
9. Express the antiderivative $\int \frac{\sin \left(t^{2}\right)-t^{2}}{t^{6}} d t$ as an infinite series.
10. (Multiple choice - No partial credit) Circle the correct answer.
(a)

Find the tangent plane to the surface $z=x^{2} y^{3}$ at the point $(1,1,1)$.
A. $2 x+3 y-z=4$
B. $3 x+y-z=3$
C. $x+2 y+z=4$
D. $2 x+3 y=5$
E. $3 x-2 y+z=2$
(b) Consider the level curve of $f(x, y)=x^{2}-3 y^{2}$ which passes through the point $(3,1)$. Along what vector should one go to remain on the same level curve?
A. $\langle 6,-6\rangle$
B. $\langle-6,6\rangle$
C. $\langle-6,-6\rangle$
D. $\langle 0,6\rangle$
E. $\langle 6,0\rangle$
(c) What is the arclength of the piece of the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$?
A. $\int_{0}^{4}(1+2 t) d t$
B. $\int_{0}^{4} \sqrt{1+4 t^{2}} d t$
C. $\int_{0}^{2} \sqrt{t^{2}+t^{4}} d t$
D. $\int_{0}^{2} \sqrt{1+4 t^{2}} d t$
E. none of the above
(d) If $f(x, y)=\int_{y}^{x} \cos \left(t^{3}\right) d t$, then $\frac{\partial f}{\partial y}=$
A. $\cos \left(y^{3}\right)$
B. $3 y^{2} \cos \left(y^{3}\right)$
C. $\sin \left(y^{3}\right)$
D. $-3 y^{2} \sin \left(y^{3}\right)$
E. none of the above
(e) Suppose that you are given a function $f(x, y)$ and vectors $\mathbf{u}=\left\langle\frac{1}{2}, \frac{-\sqrt{3}}{2}\right\rangle$ and $\mathbf{v}=\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$. If $\left(D_{\mathbf{u}} f\right)\left(x_{0}, y_{0}\right)=2$ and $\left(D_{\mathbf{v}} f\right)\left(x_{0}, y_{0}\right)=-1$, then $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=$
A. $\frac{1}{2}$
B. 1
C. 2
D. $\sqrt{3}$
E. none of the above

Suppose that the graph of $z=f(x, y)$ represents the surface of a mountain, and you are standing at a point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface. You are told that the gradient of f at $\left(x_{0}, y_{0}\right)$ is $\nabla f\left(x_{0}, y_{0}\right)=\langle 1,3\rangle$. If you move in the direction of the gradient, what is your initial angle of elevation?
A. $\tan ^{-1} 3$
B. $\cos ^{-1} 3$
C. $\tan ^{-1} \sqrt{10}$
D. $\cos ^{-1} \sqrt{10}$
E. none of the above

