- 1. (Optimization).
 - (a) Find and classify all local extreme points of $f(x, y) = x^2 + x + 2y^2$ on the domain $x^2 + y^2 < 1$.
 - (b) Determine the absolute maximum and minimum of $f(x, y) = x^2 + x + 2y^2$ on the domain $x^2 + y^2 \leq 1$. Be sure to indicate both the maximum and minimum values as well as the coordinates of all points at which they occur.
- 2. Suppose that z = f(x, y), x = uv and y = u + 3v. Assume that when u = 2 and v = 1, $\frac{\partial z}{\partial u} = -2$ and $\frac{\partial z}{\partial v} = -1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 3. Find an equation of the plane which is perpendicular to the line x = 2 t, y = 2t, z = 3 + t/2, and which contains the line x = 4 + 2s, y = -1 + 3s, z = 2 8s.
- 4. Consider the surface $x^2 + y^2 + z^2 = 9$. Find the point of intersection of the tangent plane to the surface at the point (1, 2, 2) and the *x*-axis.
- 5. Find the maxima and minima of f(x, y, z) = xyz subject to the constraint $g(x, y, z) = x^2 + 2y^2 + 3z^2 = 6$.
- 6. Write an equation for the tangent plane to the level surface $f(x, y, z) = ze^{xy} + xe^{yz} = 2$ at the point (1, 0, 1).
- 7. What is the arclength of the curve $y = \ln(\cos(x))$ for x from 0 to $\pi/4$.
- 8. Find the absolute extrema of $f(x, y) = e^{xy} + e^x$ in the first quadrant of the xy-plane.
- 9. Express the antiderivative $\int \frac{\sin(t^2) t^2}{t^6} dt$ as an infinite series.
- 10. (Multiple choice No partial credit) Circle the correct answer.
 - (a) Find the tangent plane to the surface $z = x^2y^3$ at the point (1, 1, 1).

A. 2x + 3y - z = 4 **B**. 3x + y - z = 3 **C**. x + 2y + z = 4

D.
$$2x + 3y = 5$$
 E. $3x - 2y + z = 2$

(b) Consider the level curve of $f(x, y) = x^2 - 3y^2$ which passes through the point (3, 1). Along what vector should one go to remain on the same level curve?

A.
$$\langle 6, -6 \rangle$$
 B. $\langle -6, 6 \rangle$ C. $\langle -6, -6 \rangle$ D. $\langle 0, 6 \rangle$

E. $\langle 6, 0 \rangle$

(c) What is the arclength of the piece of the parabola $y = x^2$ from (0,0) to (2,4)?

A.
$$\int_0^4 (1+2t) dt$$
 B. $\int_0^4 \sqrt{1+4t^2} dt$ C. $\int_0^2 \sqrt{t^2+t^4} dt$
D. $\int_0^2 \sqrt{1+4t^2} dt$ E. none of the above

(d) If
$$f(x, y) = \int_{y}^{x} \cos(t^{3}) dt$$
, then $\frac{\partial f}{\partial y} =$
A. $\cos(y^{3})$
B. $3y^{2} \cos(y^{3})$
C. $\sin(y^{3})$
D. $-3y^{2} \sin(y^{3})$
E. none of the above

(e) Suppose that you are given a function f(x, y) and vectors $\mathbf{u} = \langle \frac{1}{2}, \frac{-\sqrt{3}}{2} \rangle$ and $\mathbf{v} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$. If $(D_{\mathbf{u}}f)(x_0, y_0) = 2$ and $(D_{\mathbf{v}}f)(x_0, y_0) = -1$, then $\frac{\partial f}{\partial x}(x_0, y_0) =$ **A**. $\frac{1}{2}$ **B**. 1 **C**. 2 **D**. $\sqrt{3}$ **E**. none of the above

(f) Suppose that the graph of z = f(x, y) represents the surface of a mountain, and you are standing at a point (x_0, y_0, z_0) on the surface. You are told that the gradient of f at (x_0, y_0) is $\nabla f(x_0, y_0) = \langle 1, 3 \rangle$. If you move in the direction of the gradient, what is your initial angle of elevation?

A. $\tan^{-1} 3$ **B**. $\cos^{-1} 3$ **C**. $\tan^{-1} \sqrt{10}$ **D**. $\cos^{-1} \sqrt{10}$

E. none of the above