1. Consider the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{(n+1)^{2}} .
$$

For which values of x is $f(x)$ defined?
Solution: The function $f(x)$ is defined at values of x for which the series converges. We find the radius of convergence using the ratio test.

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-3)}{(n+2)^{2}}}{\frac{(x-3)^{n}}{(n+1)^{2}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}(x-3)}{(n+2)^{2}}\right|=|x-3| \lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{(n+2)^{2}}\right|=|x-3| .
$$

The ratio test tells us that the series converges when $|x-3|<1$ and diverges when $|x-3|>1$.
When $|x-3|=1$ the ratio test fails, and we have to try something else. For $x-3=1$, or $x=4$, we have

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{(n+1)^{2}}=\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}
$$

which converges because it is a p-series with $p=2$. For $x-3=-1$, or $x=2$, we have

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{(n+1)^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{2}}
$$

which converges by the alternating series test. It also converges because it converges absolutely.
Therefore the series converges, and $f(x)$ is defined, when $|x-3| \leq 1$, or when $2 \leq x \leq 4$.
2. (a) What is the Maclaurin series (the Taylor series about $x=0$) for the function $f(x)=e^{x}$?
You do not need to show any work for this part of the problem, so if you remember the answer, you can just write it down.

Solution:

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

(b) Find the Maclaurin series for $g(x)=e^{-x^{2}}$.

Solution: Substituting $-x^{2}$ for x in the Maclaurin series for e^{x}, we get

$$
\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}
$$

(c) Let $F(x)=\int_{0}^{x} e^{-t^{2}} d t$. Find the first four nonzero terms of the Maclaurin series for $F(x)$.
Solution: Replacing x by t in the Maclaurin series for $e^{-x^{2}}$ yields the Macluarin series for the integrand

$$
e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}
$$

Integrating this power series term-by-term

$$
\int e^{t^{2}} d t=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1) n!}
$$

Evaluating the integral from $t=0$ to $t=x$ gives

$$
\begin{aligned}
\int_{0}^{x} e^{t^{2}} d t & =\left.\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1) n!}\right]\right|_{t=0} ^{t=x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}+\cdots
\end{aligned}
$$

So the first four nonzero terms are

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{7}}{7 \cdot 3!}
$$

3. Find the Taylor series for $f(x)=\ln (x)-\ln (3)$ centered about $a=3$.

Solution: Calculating the first few derivatives of $f(x)$, we have

$$
\begin{aligned}
& f^{(0)}(x)=\ln (x)-\ln (3) \\
& f^{(1)}(x)=1 / x \\
& f^{(2)}(x)=-1 / x^{2} \\
& f^{(3)}(x)=2 / x^{3} \\
& f^{(4)}(x)=-2 \cdot 3 / x^{4} \\
& f^{(5)}(x)=2 \cdot 3 \cdot 4 / x^{4}
\end{aligned}
$$

we find that if $n \geq 1$, then the n-th derivative is $f^{(n)}(x)=(-1)^{n+1}(n-1)!/ x^{n}$. Hence Taylor's formula gives

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(3)+\sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =0+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n-1)!}{3^{n} n!}(x-3)^{n} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 3^{n}}(x-3)^{n}
\end{aligned}
$$

4. Suppose that \vec{a} and \vec{b} are two vectors in \mathbb{R}^{3} such that if \vec{a} and \vec{b} are drawn emanating from the origin they both lie in the $x y$-plane, \vec{a} in the third quadrant $(x<0$ and $y<0)$ and \vec{b} in the second quadrant $(x<0$ and $y>0)$.
Suppose also that we know $|\vec{a}|=1$ and $|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=1$.
(a) Is the projection of \vec{b} onto \vec{a} longer than \vec{a}, shorter than \vec{a}, or the same length as \vec{a} ?

Solution:

If θ is the angle between \vec{a} and \vec{b}, then

$$
|\vec{a}|=\sqrt{\vec{a} \cdot \vec{a}}=1 \quad|\vec{b}|=\sqrt{\vec{b} \cdot \vec{b}}=2 \quad \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{1}{2}
$$

The length of the projection of \vec{b} onto \vec{a} is $|\vec{b}||\cos \theta|=1$, so it is the same length as \vec{a}.
(b) In what direction does $\vec{a} \times \vec{b}$ point?

Solution:

It must point in a direction normal to both \vec{a} and \vec{b}, that is, normal to the $x y$ plane, so either the direction given by \hat{k} (the positive z direction) or the direction given by $-\hat{k}$ (the negative z direction). Looking down from the top (\hat{k}, or positive z, direction) of the $x y$-plane we see that from \vec{a} to \vec{b} is a clockwise direction, so by the right-hand rule, the cross product points in the direction given by $-\hat{k}$.
(c) Find the length of $\vec{a} \times \vec{b}$.

Solution:

If $\cos \theta=\frac{1}{2}$ then $\sin \theta=\frac{\sqrt{3}}{2}$ (we know it cannot be negative because we always take θ to be an acute angle) so

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta=\sqrt{3}
$$

5. Find an equation for the plane that contains the two lines L_{1} and L_{2} :

$$
\begin{array}{cccc}
L_{1}: & x=t+2 & y=3 t-5 & z=5 t+1 \\
L_{2}: & x=5-t & y=3 t-10 & z=9-2 t
\end{array}
$$

Solution: A vector that points in the same direction as L_{1} is $\mathbf{v}_{\mathbf{1}}=\langle 1,3,5\rangle$ and one that points in the same direction as L_{2} is $\mathbf{v}_{\mathbf{2}}=\langle-1,3,-2\rangle$. Since the plane contains both lines, a normal vector to the plane must be orthogonal to $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$. We can construct a normal vector using the cross product:
$\mathbf{n}=\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\operatorname{det}\left[\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 5 \\ -1 & 3 & -2\end{array}\right]=(-6-15) \hat{i}-(-2+5) \hat{j}+(3+3) \hat{k}=\langle-21,-3,6\rangle$
Since the plane contains both lines, we can find a point in the plane by finding a point on either line, using any parameter value of t. Taking $t=0$ in the parametric equations for L_{1}, we know that $(2,-5,1)$ is contained in the plane. So an equation for the plane is

$$
\langle-21,-3,6\rangle \cdot\langle x-2, y+5, z-1\rangle=0
$$

or

$$
-21 x-3 y+6 z+21=0
$$

