1. Let $f(x, y)=5+3 x^{2}+3 y^{2}+2 y^{3}+x^{3}$.
(a) Final all critical points of f.
(b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum, saddle point, or N/A if the test is not does not yield any information.
(c) Determine whether or not $f(x, y)$ has a global maximum in the xy-plane. Justify your answer.
2. Suppose that as you move away from the point $(2,0,1)$, the function $f(x, y, z)$ increases most rapidly in the direction of the vector $3 \hat{i}-\hat{j}+5 \hat{k}$ and the rate of increase of f in this direction is 7 . What is $\nabla f(2,0,1)$?
3. Consider the function $f(x, y)=x^{3}+y^{3}-9 x y+1$
(a) Find and classify the critical points on $f(x, y)$.
(b) Find the absolute maximum and minimum values of $f(x, y)$ in the triangle with vertices $(0,4),(4,0)$, and $(4,4)$.
4. (a) Find a set of parametric equations for the line passing through the point $(2,1,-1)$ and normal to the tangent plane of

$$
4 x+y^{2}+z^{3}=8
$$

(b) Suppose that $z=f(x, y)$, where $x=e^{t}$ and $y=t^{2}+3 t+2$. Given that $\partial z / \partial x=$ $2 x y^{2}-y$ and $\partial z / \partial y=2 x^{2} y-x$, find $d z / d t$ when $t=0$.
(c) Let $f(x, y)=(x-y)^{3}+2 x y+x^{2}-y$. Find the linear approximation $L(x, y)$ near the point (1,2).
5. Find the equation of the tangent plane to the surface $z=4 x^{3} y^{2}+2 y$ at the point $(1,-2,12)$.
6. Find all points at which the surface

$$
x^{2}+y^{2}+2 x=z^{2}
$$

has a vertical tangent plane.
7. Suppose that $f(x, y)$ is the distance between the origin $(0,0)$ and the point (x, y). Use what you know about the significance of the gradient to find

$$
\nabla f(3,4)
$$

without finding a formula for f or computing any derivatives.
8. Find a function parametrizing the curve γ given by the intersection of the plane with equation $z=x-y$ and the cylinder with equation $x^{2}+y^{2}=1$.
Find an equation for the line tangent to γ at the point where $(x, y)=(0,1)$. Represent the arclength of γ as an integral. You do NOT have to evaluate this integral; just write it down.

