Math 8

Winter 2015
Power Series
A power series about $x=1$ is an "infinite polynomial"

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n} .
$$

In general, this series will converge for some values of x and diverge for some values of x. The set of values of x for which the series converges is called the interval of convergence. (This set always is an interval.)

A power series always has a radius of convergence R, with $0 \leq R \leq \infty$. The series converges for $|x-a|<R$ and diverges for $|x-a|>R$.

If $R=\infty$, the series converges for all x, and the interval of convergence is $(-\infty, \infty)$.

If $R=0$, the series converges only for $x=a$, and the interval of convergence is the "interval" $[a, a]$ containing only one point.

If $0<R<\infty$, the series may converge or diverge at the endpoints $|x-a|=R$ of the interval of convergence, or it may converge at one endpoint and diverge at the other. The possibilities for the interval of convergence are $[a-R, a+R],(a-R, a+R],[a-R, a+R),(a-R, a+R)$.

We can often find the radius of convergence of a power series using the ratio test.

A power series defines a function f whose domain is the interval of convergence of the power series,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} .
$$

For example, the function

$$
f(x)=\sum_{n=0}^{\infty}(x-a)^{n}
$$

is defined by a geometric series with ratio $r=x-a$. Therefore, it converges when $|x-a|<1$ (the interval of convergence is $(a-1, a+1)$), and we know
what it converges to:

$$
f(x)=\sum_{n=0}^{\infty}(x-a)^{n}=\frac{1}{1-(x-a)}
$$

We can use this power series to find power series expressions for other functions.

For example, suppose we want to express $\frac{1}{x+3}$ as a power series about $x=0$. We know we can write

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Since

$$
x+3=3\left(\frac{x}{3}+1\right)=3\left(1-\left(-\frac{x}{3}\right)\right)
$$

we can write

$$
\begin{aligned}
\frac{1}{x+3}=\frac{1}{3\left(1-\left(-\frac{x}{3}\right)\right)}= & \frac{1}{3}\left(\frac{1}{\left(1-\left(-\frac{x}{3}\right)\right)}\right)=\frac{1}{3}\left(\sum_{n=0}^{\infty}\left(-\frac{x}{3}\right)^{n}\right)= \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{n} .
\end{aligned}
$$

Since we were substituting $-\frac{x}{3}$ for x in the power series $\sum_{n=0}^{\infty} x^{n}$, which converges for $|x|<1$, we expect convergence for $\left|\frac{x}{3}\right|<1$, or $|x|<3$.

Exercise 1: Apply the Ratio Test directly to the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{n}
$$

to find the radius of convergence.

A very important fact about power series is that they can be integrated and differentiated term-by-term, and the resulting power series has the same radius of convergence. (It may behave differently at the endpoints of the interval of convergence.)

For example, taking

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

and integrating both sides, we get

$$
\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=-\ln |1-x|+C
$$

We can plug in $x=0$ to solve for C :

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{0^{n+1}}{n+1}=-\ln |1-0|+C \\
0=0+C \\
C=0 \\
\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=-\ln |1-x|
\end{gathered}
$$

We know this expression is valid within the radius of convergence of our original series, or for $|x|<1$.

In particular, it converges at $x=-\frac{1}{2}$, and we can write

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{n+1}}{n+1}=-\ln \left|1-\left(-\frac{1}{2}\right)\right| \\
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1) 2^{n+1}}=-\ln \left|\frac{3}{2}\right|=-(\ln 3-\ln 2) \\
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1) 2^{n+1}}=\ln 2-\ln 3
\end{gathered}
$$

Exercise 2: Apply the error estimate from the Alternating Series Test to the equation

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1) 2^{n+1}}=\ln 2-\ln 3
$$

to approximate $\ln 2-\ln 3$ to within 3 decimal places.

Exercise 3: Find the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

(Note, by convention we define 0 ! to equal 1 , so the constant term of this series is 1.)

For the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},
$$

use term-by-term differentiation to find a power series expression for $f^{\prime}(x)$.

You should have found $f^{\prime}(x)=f(x)$. Did you? What function do you know that has this property?

Exercise 4: Express $\frac{1}{x^{2}+1}$ as a power series about $x=0$.
Use this expression to express $\tan ^{-1}(x)$ as a power series about $x=0$.
What is the interval of convergence of the resulting power series?
Use the expression for $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ to express $\pi \sqrt{3}$ as an infinite series.
Find a sum of finitely many fractions that approximates $\pi \sqrt{3}$ to within an error of at most .05 .

