Math 8

Winter 2020

Preliminary Homework
 Assigned Wednesday, January 8

Note: Preliminary homework is always graded credit or no credit. You get full credit for completing the assignment, whether or not your answers are correct, as long as your work shows you have thought about the problem. The purpose of preliminary homework is to start you thinking about the topic of the next class.

You may use your preliminary homework for in-class activities with your classmates. You should be sure to think about these questions so you will be prepared.

Preliminary homework is always due at the beginning of the next class.
In the last preliminary homework, you showed the $n^{t h}$ degree Taylor polynomial $T_{n}(x)$ for the function $f(x)=\frac{1}{1-x}$ centered at the point $a=0$ is $T_{n}(x)=\sum_{k=0}^{n} x^{k}$.

We are interested in the limit, for particular values of x, which you may have seen (or can see from the Day 2 notes) is the actual value $\frac{1}{1-x}$ if $|x|<1$, and does not exist if $|x| \geq 1$. We may write this limit as an infinite sum,

$$
\sum_{k=0}^{\infty} x^{k}=\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} x^{k}\right)= \begin{cases}\frac{1}{1-x} & \text { if }|x|<1 \\ \text { undefined } & \text { if }|x| \geq 1\end{cases}
$$

Use this formula to find the following infinite sums.

1. $\sum_{k=0}^{\infty} \frac{1}{3^{k}}$.
2. $\sum_{k=0}^{\infty} \frac{4}{3^{k}}$. (Hint: You can factor the 4 out of the sum.)
3. $\sum_{k=2}^{\infty} \frac{1}{3^{k}}$. (Be careful; this sum doesn't start at $k=0$.)
