Math 8

Winter 2020

WeBWorK Day 11 Problem 3
 Sample Solution

Problem: Let $\vec{a}=\langle 3,-2,1\rangle$ and $\vec{b}=\langle 3,3,-2\rangle$. Show that there are scalars s and t such that $s \vec{a}+t \vec{b}=\langle-3,12,-7\rangle$.

We want to find s and t satisfying

$$
s\langle 3,-2,1\rangle+t\langle 3,3,-2\rangle=\langle-3,12,-7\rangle
$$

Working out the scalar multiplication and vector addition, this becomes

$$
\langle 3 s+3 t,-2 s+3 t, s-2 t\rangle=\langle-3,12,-7\rangle
$$

We can rewrite this as three scalar equations, one for each coordinate,

$$
\begin{gathered}
3 s+3 t=-3 \\
-2 s+3 t=12 \\
s-2 t=-7
\end{gathered}
$$

Now we solve this system of equations. Subtracting the second equation from the first gives

$$
5 s=-15 \quad s=-3
$$

Substituting into the third equation gives

$$
-3-2 t=-7 \quad t=2
$$

Now we check that this works. (A system of three equations in only two unknowns usually does not have a solution.)

$$
s \vec{a}+t \vec{b}=-3\langle 3,-2,1\rangle+2\langle 3,3,-2\rangle=\langle-9+6,6+6,-3-4\rangle=\langle-3,12,-7\rangle
$$

This is what we needed to show.
Note: If you start at the origin, move with displacement $s \vec{a}$ (in a direction parallel to \vec{a}), and then with displacement $t \vec{b}$, you will always end up on the plane containing the origin and parallel to vectors \vec{a} and \vec{b}. That is, all the points with position vectors of the form $s \vec{a}+t \vec{b}$ lie on a plane. Three points on that plane are $(0,0,0),(3,-2,1)$, and $(3,3,-2)$ This problem shows that the point $(-3,12,-7)$ also lies on that plane.

