Math 8

Winter 2020

WeBWorK Day 7 Problem 5
 Sample Solution

Problem: Let $F(a)$ be the area between the x-axis and the graph of $y=x^{2} e^{-\frac{x}{3}}$ between $x=0$ and $x=a$ for $a>0$ (consider the area to be negative if the graph lies below the x-axis).

Question 1: Find a formula for $F(a)$.
Solution: Start with

$$
F(a)=\int_{0}^{a} x^{2} e^{-\frac{x}{3}} d x
$$

We use integration by parts twice. In the first integral, we use $u=x^{2}$ and $d v=e^{-\frac{x}{3}} d x$, so $d u=2 x d x$ and $v=-3 e^{-\frac{x}{3}}$.
$\int x^{2} e^{-\frac{x}{3}} d x=\int u d v=u v-\int v d u=-3 x^{2} e^{-\frac{x}{3}}-\int\left(-3 e^{-\frac{x}{3}}\right) 2 x d x=-3 x^{2} e^{-\frac{x}{3}}+6 \int x e^{-\frac{x}{3}} d x$.
In the second integral, we use $u=x$ and $d v=e^{-\frac{x}{3}} d x$, so $d u=d x$ and $v=-3 e^{-\frac{x}{3}}$.

$$
\begin{gathered}
\int x e^{-\frac{x}{3}} d x=\int u d v=u v-\int v d u=-3 x e^{-\frac{x}{3}}-\int\left(-3 e^{-\frac{x}{3}}\right) d x=-3 x e^{-\frac{x}{3}}+3 \int e^{-\frac{x}{3}} d x \\
=-3 x e^{-\frac{x}{3}}-9 e^{-\frac{x}{3}}+C
\end{gathered}
$$

We substitute back into our first integral:

$$
\begin{gathered}
\int x^{2} e^{-\frac{x}{3}} d x=-3 x^{2} e^{-\frac{x}{3}}+6 \int x e^{-\frac{x}{3}} d x=-3 x^{2} e^{-\frac{x}{3}}+6\left(-3 x e^{-\frac{x}{3}}-9 e^{-\frac{x}{3}}\right)+C= \\
-3 x^{2} e^{-\frac{x}{3}}-18 x e^{-\frac{x}{3}}-54 e^{-\frac{x}{3}}+C .
\end{gathered}
$$

Now we can evaluate $F(a)$:
$F(a)=\int_{0}^{a} x^{2} e^{-\frac{x}{3}} d x=\left.\left(-3 x^{2} e^{-\frac{x}{3}}-18 x e^{-\frac{x}{3}}-54 e^{-\frac{x}{3}}\right)\right|_{x=0} ^{a}=-3 a^{2} e^{-\frac{a}{3}}-18 a e^{-\frac{a}{3}}-54 e^{-\frac{a}{3}}+54$.
Question 2: Is $F(a)$ increasing or decreasing for $0<a<2$?
Solution: We can find $F^{\prime}(a)$ by differentiation, or by using the Fundamental Theorem of Calculus:

$$
F^{\prime}(a)=a^{2} e^{-\frac{a}{3}}
$$

Since this is always positive, $F(a)$ is increasing.
Question 3: Is $F(a)$ concave up or concave down for $0<a<2$?
Solution: We find $F^{\prime \prime}(a)$ by differentiation,

$$
F^{\prime \prime}(a)=\left(2 a-\frac{a^{2}}{3}\right) e^{-\frac{a}{3}}=a\left(2-\frac{a}{3}\right) e^{-\frac{a}{3}}
$$

Since this is positive for $0 \leq a \leq 2$, on this interval $F(a)$ is concave upward.

