Taylor Polynomials

Goal and motivation

We want to approximate certain functions with polynomials (such that they have the same derivatives).

Such approximations are also useful to

- integrate functions that may not have an elementary antiderivative (e.g. $f(x)=e^{x^{2}}$)
- to solve some differential equations (i.e. equations involving derivatives)

We already know such an approximation... linear aproximation:
Given a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$, then the linear approximation of f at $x=a$ is given by

$$
T(x)=f(a)+f^{\prime}(a)(x-a)
$$

Idea: approximate a function with a straight line close to a given point (i.e. use the tangent to its graph).
Example: The linear approximation of $f(x)=e^{x}$ at $x=0$ is given by

$$
T(x)=e^{0}+e^{0}(x-0)=1+x
$$

Unfortunately, this is a bad approximation further away from 0. E.g. $f(4)=54.59815003$, but $T(4)=5$.

An improved approximation

Let's explore $T(x)=f(a)+f^{\prime}(a)(x-a)$, for some function f at $x=a$, and build on its properties to find better approximations.
We note that

- $T(x)=f^{\prime}(a) x+$ constant, that is, $T(x)$ is a $1^{\text {st }}$-degree polynomial
- $T(a)=f(a)$ and $T^{\prime}(a)=f^{\prime}(a)$, i.e. they have the same derivatives at $x=a$.

New idea: approximate f by a polynomial T_{n} (of arbitrary degree n) such that derivatives of all orders are equal (i.e. $\left.T_{n}^{(k)}(a)=f^{(k)}(a)\right)$. Hopefully the approximation gets better as we increase the degree of the polynomial...

Taylor Polynomials

Suppose f has continuous derivatives of all orders.

Definition

The $n^{t h}$-degree Taylor polynomial of f at $x=a$ is

$$
\begin{aligned}
T_{n}(x)= & f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}(a)}{2 \cdot 3}(x-a)^{3}+ \\
& \ldots+\frac{f^{(n)}(a)}{2 \cdot 3 \cdots n}(x-a)^{n} \\
= & \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
\end{aligned}
$$

When $a=0$ we call T_{n} a Maclaurin polynomial.

[^0]
Examples

Find
(1) the $4^{\text {th }}$-degree Taylor polynomial for $f(x)=e^{x}$ at $x=0$,
(2) the $4^{\text {th }}$ - and $40^{\text {th }}$-degree Taylor polynomials for $g(x)=\cos (x)$ at $x=0$,
(3) the $20^{\text {th }}$-degree Taylor polynomial for $h(x)=x^{-2}$ at $x=1$.
(1) the $70^{\text {th }}$-degree Maclaurin polynomial for $y(x)=\sin (3 x)$ at $x=\pi$.

How good are these approximations?
Consider $h(x)=x^{-2}$ at $x=1$

Error

Definition

The $n^{t h}$ remainder is defined by

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

The error in the approximation is

$$
|R(x)|
$$

We hope that

$$
\lim _{n \rightarrow \infty} R(x)=0
$$

or equivalently, that

$$
\lim _{n \rightarrow \infty} T_{n}(x)=f(x)
$$

Examples

We'll have more to say about the following important example that will be used later on again.

$$
f(x)=\frac{1}{1-x}
$$

(1) Show the Maclaurin polynomial for f is $T_{n}(x)=\frac{1-x^{1+n}}{1-x}$
(2) Show that $T_{n}(x)=f(x)-\frac{x^{1+n}}{1-x}$. So $R_{n}(x)=\frac{x^{1+n}}{1-x}$
(3) Compute $\lim _{n \rightarrow \infty} R_{n}(3)$ and $\lim _{n \rightarrow \infty} R_{n}\left(\frac{1}{3}\right)$. What can you say about T_{n} as an approximation for f ?

[^0]: - Tyalor polynimial approximation

