Taylor Polynomials

We want to approximate certain functions with polynomials (such that they have the same derivatives).

Such approximations are also useful to

- integrate functions that may not have an elementary antiderivative (e.g. $f(x) = e^{x^2}$)
- to solve some differential equations (i.e. equations involving derivatives)

We already know such an approximation... linear aproximation:

Given a differentiable function $f : \mathbb{R} \to \mathbb{R}$, then the linear approximation of f at x = a is given by

$$T(x) = f(a) + f'(a)(x - a)$$

Idea: approximate a function with a straight line close to a given point (i.e. use the tangent to its graph).

Example: The linear approximation of $f(x) = e^x$ at x = 0 is given by

$$T(x) = e^{0} + e^{0}(x - 0) = 1 + x$$

Unfortunately, this is a bad approximation further away from 0. E.g. f(4) = 54.59815003, but T(4) = 5.

An improved approximation

Let's explore T(x) = f(a) + f'(a)(x - a), for some function f at x = a, and build on its properties to find better approximations. We note that

T(x) = f'(a)x + constant, that is, T(x) is a 1st-degree polynomial
T(a) = f(a) and T'(a) = f'(a), i.e. they have the same derivatives at x = a.

New idea: approximate f by a polynomial T_n (of arbitrary degree n) such that derivatives of all orders are equal (i.e. $T_n^{(k)}(a) = f^{(k)}(a)$). Hopefully the approximation gets better as we increase the degree of the polynomial... Suppose f has continuous derivatives of all orders.

Definition

The n^{th} -degree Taylor polynomial of f at x = a is

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f^{(3)}(a)}{2 \cdot 3}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{2 \cdot 3 \cdots n}(x-a)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

When a = 0 we call T_n a Maclaurin polynomial.

[▶] Tyalor polynimial approximation

Find

- the 4th-degree Taylor polynomial for $f(x) = e^x$ at x = 0,
- the 4th- and 40th-degree Taylor polynomials for g(x) = cos(x) at x = 0,
- (3) the 20th-degree Taylor polynomial for $h(x) = x^{-2}$ at x = 1.
- the 70th-degree Maclaurin polynomial for $y(x) = \sin(3x)$ at $x = \pi$.

How good are these approximations? Consider $(h(x) = x^{-2} \text{ at } x = 1)$

Definition

The n^{th} remainder is defined by

$$R_n(x) = f(x) - T_n(x).$$

The **error** in the approximation is

 $\mid R(x) \mid .$

We hope that

$$\lim_{n \to \infty} R(x) = 0$$

or equivalently, that

$$\lim_{n \to \infty} T_n(x) = f(x).$$

Examples

We'll have more to say about the following important example that will be used later on again.

$$f(x) = \frac{1}{1-x}$$

(1) Show the Maclaurin polynomial for f is $T_n(x) = \frac{1 - x^{1+n}}{1 - x}$

(2) Show that
$$T_n(x) = f(x) - \frac{x^{1+n}}{1-x}$$
. So $R_n(x) = \frac{x^{1+n}}{1-x}$

(3) Compute $\lim_{n\to\infty} R_n(3)$ and $\lim_{n\to\infty} R_n(\frac{1}{3})$. What can you say about T_n as an approximation for f?