3-D Coordinates

Always label your axes

Notation: $\mathbb{R}^{3}=\{(x, y, z): x, y, z \in \mathbb{R}\}$

The distance (or norm) from P to Q is

$$
|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{2}\right)^{2}}
$$

Surfaces in \mathbb{R}^{3}

$$
\begin{array}{c|c|c}
\text { Equation } & \mathbb{R}^{2} & \mathbb{R}^{3} \\
\hline \hline x+y=1 & \text { line } & \text { plane } \\
\hline
\end{array}
$$

Surfaces in \mathbb{R}^{3}

Equation	\mathbb{R}^{2}	\mathbb{R}^{3}
$x+y=1$	line	plane
$x=1$	line	plane

Surfaces in \mathbb{R}^{3}

Equation	\mathbb{R}^{2}	\mathbb{R}^{3}
$x+y=1$	line	plane
$x=1$	line	plane
$x^{2}+y^{2}=4$	circle	cylinder

Surfaces in \mathbb{R}^{3}

Equation	\mathbb{R}^{2}	\mathbb{R}^{3}
$x+y=1$	line	plane
$x=1$	line	plane
$x^{2}+y^{2}=4$	circle	cylinder
$x^{2}+y^{2}=4$ and $z=3$		circle

Surfaces in \mathbb{R}^{3}

Equation	\mathbb{R}^{2}	\mathbb{R}^{3}
$x+y=1$	line	plane
$x=1$	line	plane
$x^{2}+y^{2}=4$	circle	cylinder
$x^{2}+y^{2}=4$ and $z=3$		circle
$x^{2}+y^{2}+z^{2}=4$		sphere

(1) Sketch the triangle with vertices $P(3,-2,-3), Q(7,0,1)$ and $R(1,2,1)$. Is the triangle an isosceles?
(2) Sketch the surface given by $x^{2}+y^{2} \leq 9$ and $z=1$.
(3) What is the equation of the sphere with center $(0,-2,3)$ and radius $r=5$?
(1) Find the center and radius of the sphere $x^{2}+2 x+y^{2}+z^{2}-6 z=6$
(6) Find the equation of the curve where $(x-3)^{2}+y^{2}+(z-1)^{2}=5$ intersects the $x y$-plane and sketch it.
(0) Sketch $y=x^{2}+y^{2}$. (We"ll consider such surfaces in more detail later on)
(1) Sketch $z^{2}=x^{2}+y^{2}$. (We"ll consider such surfaces in more detail later on)

