Vectors

VECTOR: I'm applying for a villain loan. I go by Vector. It's a mathematical term, represented by an arrow with both direction and magnitude. Vector! That's me, because I commit crimes with both direction and magnitude. Oh yeah!

From "Despicable Me"

A vector is a quantity that has both magnitude and direction.

A geometric approach

$A \xrightarrow{v=\overline{A B}} B$

Given two points A and B, the vector $\mathbf{v}=\vec{v}=\overrightarrow{A B}=\overline{A B}$ is the vector with initial point A, points in the direction of B (from A) and has magnitude equal to the length of the line segment $|A B|$.

Algebra of geometric vectors

Adding

Given two vectors \vec{v} and \vec{w}, the vector $\vec{v}+\vec{w}$ is the vector with the same initial point as \vec{v} and the same terminal point as \vec{w}.

Subtracting

Given two vectors \vec{v} and \vec{w}, then the vector $-\vec{v}$ is the vector with the same magnitude as \vec{v}, but with opposite direction to \vec{v} and $\vec{w}-\vec{v}=\vec{w}+(-\vec{v})$.

Algebra of geometric vectors

Adding

Given two vectors \vec{v} and \vec{w}, the vector $\vec{v}+\vec{w}$ is the vector with the same initial point as \vec{v} and the same terminal point as \vec{w}.

Subtracting

Given two vectors \vec{v} and \vec{w}, then the vector $-\vec{v}$ is the vector with the same magnitude as \vec{v}, but with opposite direction to \vec{v} and $\vec{w}-\vec{v}=\vec{w}+(-\vec{v})$.

Scalar multiplication

If c is a scalar and \vec{v} a vector, then the scalar multiple $c \vec{v}$ is the vector with with magnitude $|c|$ times the magnitude of \vec{v}, and with the same direction as \vec{v} if $c>0$ and opposite direction if $c<0$. If $c=0$ we get the zero vector $\overrightarrow{0}$.

An algebraic approach

Given two points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$, then $\overrightarrow{A B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$. The coordinates of $\overrightarrow{A B}$ are called the components of $\overrightarrow{A B}$

A position vector is a representation of a vector with its initial point at the origin.

The magnitude of $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is $|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$.

Algebra of component vectors

Let $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.

Adding

$\vec{v}+\vec{w}=\left\langle v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right\rangle$
$\vec{v}-\vec{w}=\left\langle v_{1}-w_{1}, v_{2}-w_{2}, v_{3}-w_{3}\right\rangle$
$c \vec{v}=\left\langle c v_{1}, c v_{2}, c v_{3}\right\rangle$
A unit vector is a vector with length 1.

Three special vectors

$$
\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle \text { and } \vec{k}=\langle 0,0,1\rangle
$$

