Vectors
KeyConcept Dot Product of Vectors in a Plane
The dot product of $\mathrm{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathrm{b}=\left\langle b_{1}, b_{2}\right\rangle$ is defined as $\mathrm{a} \cdot \mathrm{b}=a_{1} b_{1}+a_{2} b_{2}$.

Does this remind you of anything? What? How?

$$
\left[\begin{array}{ll}
r_{1} & r_{2}
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{ll}
r_{1} & d_{1}
\end{array}\right.
$$

Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.

Definition

The dot product of \vec{a} and \vec{b} is the scalar defined by

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Properties of the dot product

Let \mathbf{a}, \mathbf{b} and \mathbf{c} be coordinate vectors in \mathbb{R}^{n} and let $k \in \mathbb{R}$ be a scalar. Then
(1) $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
(2) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(3) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(1) $(k \mathbf{a}) \cdot \mathbf{b}=k(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(k \mathbf{b})$
(6) $\mathbf{a} \cdot 0=0$

Angles between vectors

Theorem

If $0 \leq \theta \leq \pi$ is the angle between \vec{a} and \vec{b}, then

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta) \Rightarrow \cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Theorem

$$
\vec{a} \cdot \vec{b}=0 \Longleftrightarrow \vec{a} \perp \vec{b}
$$

- The dot product is defined for vectors, but it returns a scalar
- The dot product is useful for finding the angle between two vectors. In particular, to see of two vectors are perpendicular (or orthogonal).
- The dot product is useful for finding the components of vectors in certain directions - i.e. projections

Angles with the axes

The direction angles of non-zero \vec{a} the the angles α, β and γ that \vec{a} makes with the positive $x-, y-$ and z-axes, respectively.
The direction cosines are the cosines of these angles.
If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, then

$$
\cos (\alpha)=\frac{a_{1}}{|\vec{a}|}, \quad \cos (\beta)=\frac{a_{2}}{|\vec{a}|}, \quad \cos (\gamma)=\frac{a_{3}}{|\vec{a}|}
$$

Projections

Scalar projection

The scalar projection of \vec{u} onto \vec{v} is

$$
|\vec{u}| \cos (\theta)=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}
$$

NB: This is a scalar, i.e. the length of \vec{u} 's projection onto \vec{v}

Vector projection

The vector projection of \vec{u} onto \vec{v} is

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v}
$$

