<u>Vectors</u>

KeyConcept Dot Product of Vectors in a Plane

The dot product of $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ is defined as $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$.

Let
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\vec{b} = \langle b_1, b_2, b_3 \rangle$.

Definition

The **dot product** of \vec{a} and \vec{b} is the *scalar* defined by

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Properties of the dot product

Let **a**, **b** and **c** be coordinate vectors in \mathbb{R}^n and let $k \in \mathbb{R}$ be a scalar. Then

$$\mathbf{0} \ \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

$$\mathbf{2} \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$\mathbf{0} \ \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

$$(k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (k\mathbf{b})$$

$$\mathbf{i} \mathbf{a} \cdot \mathbf{0} = \mathbf{0}$$

Theorem

If $0 \le \theta \le \pi$ is the angle between \vec{a} and \vec{b} , then

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \Rightarrow \cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Theorem

$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$$

- The dot product is defined for vectors, but it returns a *scalar*
- The dot product is useful for finding the angle between two vectors. In particular, to see of two vectors are perpendicular (or orthogonal).
- The dot product is useful for finding the components of vectors in certain directions i.e. projections

Angles with the axes

The **direction angles** of non-zero \vec{a} the the angles α , β and γ that \vec{a} makes with the positive x-, y- and z-axes, respectively. The **direction cosines** are the cosines of these angles.

If
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
, then

$$\cos(\alpha) = \frac{a_1}{|\vec{a}|}, \ \cos(\beta) = \frac{a_2}{|\vec{a}|}, \ \cos(\gamma) = \frac{a_3}{|\vec{a}|}$$

Projections

Scalar projection

The scalar projection of \vec{u} onto \vec{v} is

$$\vec{u}|\cos(\theta) = \frac{\vec{u}\cdot\vec{v}}{|\vec{v}|}$$

NB: This is a scalar, i.e. the length of \vec{u} 's projection onto \vec{v}

Vector projection

The vector projection of \vec{u} onto \vec{v} is

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}$$