Cross Product

What do you get if you cross a mountain with a mountaineer?
 You can't because a mountaineer's a scaler.

Definition

The cross product of two vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is defined as

$$
\vec{a} \times \vec{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

We don't need to remember this formula - only how to compute determinants.
Example: Compute $\vec{a} \times \vec{b}$ if $\vec{a}=\langle 1,1,0\rangle$ and $\vec{b}=\langle 2,0,-2\rangle$

Theorem

If θ is the angle between the vectors \vec{a} and \vec{b}, then

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin (\theta)
$$

Corollary: $\vec{a} \| \vec{b} \Leftrightarrow \vec{a} \times \vec{b}=\overrightarrow{0}$

- The cross product is applied to vectors and returns a vector.
- $(\vec{a} \times \vec{b}) \perp \vec{a}$ and $(\vec{a} \times \vec{b}) \perp \vec{b}$.
- The direction of $\vec{a} \times \vec{b}$ can be determined with the right-hand rule.
- The cross product is useful to find a vector orthogonal to two given vectors (or a given plane, for example).
- The cross product is also useful to compute certain areas and volumes.

Area of a Parallelogram

Area of parallelogram formed by \vec{a} and \vec{b} is

$$
A=|\vec{a} \times \vec{b}|
$$

Volume of a Parallelepiped

Volume of a parallelepiped formed by \vec{a}, \vec{b} and \vec{c} is

$$
V=|\vec{a} \cdot(\vec{b} \times \vec{c})|
$$

Properties of the cross product

Let \mathbf{a}, \mathbf{b} and \mathbf{c} be coordinate vectors in \mathbb{R}^{n} and let $k \in \mathbb{R}$ be a scalar. Then
(1) $\mathbf{a} \perp \mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \perp \mathbf{a} \times \mathbf{b}$
(2) $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
(3) $(k \mathbf{a}) \times \mathbf{b}=k(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(k \mathbf{b})$
(1) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(6) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
(6) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \quad$ (scalar triple product)
(1) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

