Lines and planes in \mathbb{R}^{3}

Equations of straight lines in \mathbb{R}^{3}

Suppose L is a straight lines in \mathbb{R}^{3}. To find the equation of L we need:
(i) any point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on \mathbf{L}, and
(ii) any vector $\vec{v}=<a, b, c>$ parallel to \mathbf{L}

Equations of straight lines in \mathbb{R}^{3}

Suppose L is a straight lines in \mathbb{R}^{3}. To find the equation of L we need:
(i) any point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on \mathbf{L}, and
(ii) any vector $\vec{v}=<a, b, c>$ parallel to \mathbf{L}

Then

- $\vec{r}=\vec{r}_{0}+t \vec{v}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle \quad$ (vector eqn of L)
- $x=x_{0}+t a, y=y_{0}+t b$ and $z=z_{0}+t c$ (parametric eqns of L)
- $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$ (symmetric eqns of L$)$

Line segment from $P\left(p_{1}, p_{2}, p_{3}\right)$ to $Q\left(q_{1}, q_{2}, q_{3}\right)$:

$$
\vec{r}(t)=(1-t) \vec{p}+t \vec{q}, \quad 0 \leq t \leq 1 .
$$

Equations of planes

Suppose P is a plane in \mathbb{R}^{3}. To find the equation of P we need:
(i) any point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on P, and
(ii) any normal (perpendicular) vector $\vec{n}=\langle a, b, c\rangle$ to P Set $\vec{r}_{0}=\overrightarrow{O P_{0}}$, then

$$
\begin{array}{ll}
\text { - } \vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0 & \text { (vector equation) } \\
\text { - } a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 & \text { (scalar equation of } \mathrm{L} \text {) } \\
\text { - } a x+b y+c z+d=0 & \text { (linear equation) }
\end{array}
$$

Examples

(1) (a) Find the 3 types of equations of the line L that passes through the points $(-2,1,1)$ and $(-4,-3,1)$.
Solution: $\vec{r}(t)=<-4,-3,1>+t<2,4,0>$
(b) Find two other points on L. Sub any two values for t
(c) Where does L intersect the $z y$-plane? $(0,5,1)$
(d) Where does L intersect the $x y$-plane? It doesn't
(2) Find the linear equation of the plane through $(6,-3,4)$ with normal vector $\langle 2,-2,-1\rangle .2 x-2 y-z=14$
(3) Find the linear equation of the plane through the (non-collinear) points $(1,2,3),(-3,-2,1)$ and $(0,1,0) . x-y=-1$
(1) Find the equation of the line where the planes $x-y+2 z=2$ and $x+2 y+3 z=0$ intersect. $\vec{r}(t)=<\frac{4}{3},-\frac{2}{3}, 0>+t<-\frac{7}{3},-\frac{1}{3}, 1>$
(6) Find the point where the following lines intersect or show that they are either parallel or skew: $\vec{r}_{1}(t)=<-1+2 t, 2-t, 4-3 t>$ and $\vec{r}_{2}(s)=<3+2 s, 4+3 s, 5+4 s>.(1,1,1)$

