Vector Functions and Space Curves

Draw the following surfaces in \mathbb{R}^3 :

• $z = x^2 + y^2$ (elliptic paraboloid)

•
$$z^2 = x^2 + y^2$$
 (cone)

• $z = x^2 - y^2$ (hyperbolic paraboloid)

•
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 (ellipsoid)

• $y = x^2$ (parabolic cylinder)

Vector valued $\vec{r} : \mathbb{R} \to \mathbb{R}^3$:

 $\vec{r}:t\mapsto < f(t),g(t),h(t)>$

(identifying points in \mathbb{R}^3 with 3-component vectors)

Think of straight lines, e.g.

$$\vec{r}(t) = \langle 2, 4, 5 \rangle + t \langle 1, -2, 6 \rangle$$

= $\langle 2 + t, 4 - 2t, 5 + 6t \rangle$
= $\langle f(t), g(t), h(t) \rangle$.

Limits and continuity

Limit

If $\vec{r}(t) = < f(t), g(t), h(t) >,$ then

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle,$$

provided **each** component-limit exists.

Continuity

 $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at t = a if and only if

$$\lim_{t \to a} \vec{r}(t) = \vec{r}(a)$$

(i.e. if and only if each component function is continuous)

A **curve** γ is the range of a continuous vector function.

- Sketch the curve whose equation is given by $\vec{r}(t) = \langle 2\cos(t), 2\sin(t), t \rangle$. Link
- Prind a vector function (i.e. a parametrization) for the ellipse 9x² + y² = 9 in ℝ².
- Find a parametrization for the curve of intersection of the cylinder x² + y² = 4 and the plane z + 2y = 4.
- Find a parametrization for the curve of intersection of the sphere x² + y² + z² = 4 and the plane x = 1.