Differentiation and Integration of Vector Functions

WWW. PHDCOMICS. COM

Limit

If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle,$$

provided **each** component-limit exists.

Continuity

 $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at t = a if and only if

$$\lim_{t \to a} \vec{r}(t) = \vec{r}(a)$$

(i.e. if and only if each component function is continuous)

Derivative of \vec{r}

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

More user-friendly is:

Theorem

If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ and f', g' and h' all exist, then

 $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle.$

Theorem

If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ and f', g' and h' all exist, then $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle.$

The **unit tangent vector** is given by

$$\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$$

Example: Find the equation of the tangent line to $\vec{r}(t) = \langle \sin(2t), e^{5t}, 3t \rangle$ at t = 0.

Smoothness

A curve $\vec{r}(t), t \in I$, is **smooth** if \vec{r}' is <u>continuous</u> and $\underline{\vec{r}'(t) \neq \vec{0}}$ for every $t \in I$ (except maybe endpoint of I).

13.2 Derivatives and Integrals of Vector Functions

February 14, 2020 5 / 7

Definite integral of $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$

$$\int_{a}^{b} \vec{r} dt = \left\langle \left(\int_{a}^{b} f(t) dt \right), \left(\int_{a}^{b} g(t) dt \right), \left(\int_{a}^{b} h(t) dt \right) \right\rangle$$

= $\vec{R}(b) - \vec{R}(a),$

where $\vec{R}'(r) = \vec{r}(t)$.

• Find the unit tangent vector to to $\vec{r}(t) = \langle \sqrt{2t+2}, ln(t), t^2 \rangle$ at t = 1. Now find an equation for the tangent line to $\vec{r}(t)$ at t = 1.