$\underline{\text { Motion in Space - velocity \& acceleration }}$

OUEDOES MOTSITPTV

WUERGHANAESPEDNAND TELOCIITY

Velocity and acceleration

Suppose a particle moves through space with position vector $\vec{r}(t)$ at time t. Then, its
(1) velocity is: $\vec{v}(t)=\vec{r}^{\prime}(t)$,
(2) speed is: $|\vec{v}(t)| \quad\left(=\frac{d s}{d t}\right.$ rate of change of distance w.r.t. time)
(3) acceleration is: $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$.

Application

Newton's second law of motion:

$$
\vec{F}(t)=m \vec{a}(t)
$$

Example: A particle moves along a curve with position vector $\vec{r}(t)=\left\langle e^{t}, \ln (t), t^{2}+2 t\right\rangle$. Find its velocity and acceleration. What is its speed at time $t=1$?

Normal and tangential components of acceleration

It is sometimes useful express an objects acceleration as the sum of two vectors:
(1) in the direction of its motion - i.e. a tangential component, and
(2) in a direction perpendicular to to its motion (or its tangent) - i.e. a normal component

Normal and tangential components of acceleration

Let $\vec{r}(t)$ be the position vector of a moving object at time t.
The unit tangent vector is $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\vec{v}}{|\vec{v}|}$.
Define the unit normal vector to be $\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|}$ (this vector points in the direction the object is turning)
So $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$ (can see this by the parallelogram law in the sketch below - we'll describe the scalar functions in the next slide)

Let's describe a_{T} and a_{N} :
We can express the acceleration of a moving object as

$$
\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}
$$

where the tangential components is

$$
a_{T}=|\vec{v}|^{\prime} \text { (i.e. the derivative of its speed) }
$$

and the normal component is

$$
a_{N}=\kappa|\vec{v}|^{2} \text { (i.e. curvature times speed squared) }
$$

So

$$
\vec{a}=\left(|\vec{v}|^{\prime}\right) \vec{T}+\left(\kappa|\vec{v}|^{2}\right) \vec{N}
$$

Alternatively,

$$
a_{T}=\frac{\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}}{\left|\vec{r}^{\prime}\right|}=\frac{\vec{v} \cdot \vec{a}}{|\vec{v}|}
$$

and

$$
a_{N}=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|}
$$

Examples

(1) A particle moves along the curve $\vec{r}(t)=\left\langle e^{2 t-4}, \ln (t), \sqrt{t}\right\rangle$. (a) Find its velocity, speed and acceleration at time $t=2$. (b) What is the vector equation of the tangent line to $\vec{r}(t)$ at time $t=2$.
(2) A particle moves through space and has acceleration $\vec{a}(t)=\left\langle e^{t}, t^{2}, \cos (t)\right\rangle$. Find its position vector $\vec{r}(t)$ if $\vec{r}(0)=\langle 2,1,0\rangle$ and $\vec{v}(0)=\langle 1,0,0\rangle$.
(3) (Example 4 in Steward, p.912) A particle moves in a circular path with constant angular speed ω and has position vector $\vec{r}(t)=\langle\cos (\omega t), \sin (\omega t)\rangle$. Find the force $\vec{F}(t)$ acting on the particle.
(1) Find the tangential and normal components of the acceleration of $\vec{r}(t)=\left\langle t, 2 e^{t}, e^{2 t}\right\rangle$ at time $t=0$.

